Vol. 89
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-31
Reflectometry on Asymmetric Transmission Line Systems
By
Progress In Electromagnetics Research M, Vol. 89, 121-130, 2020
Abstract
Time domain reflectometry is frequently used to localize faults in electrical systems. Most existing literature on reflectometry in transmission lines considers symmetric faults that are either shorts between the two conductors or open circuits where both conductors are disconnected at the same location. This paper investigates spread spectrum time domain reflectometry (SSTDR) applied to asymmetric twin-lead transmission lines in which either only one conductor is disconnected or the reflectometry instrument itself is asymmetric. For asymmetric faults, we observe not only the expected dominant reflection corresponding to the location of the disconnection, but also an additional reflection from the end of the transmission line. In the second case, we leverage the asymmetric response of the SSTDR instrument to identify which of the two otherwise identical conductors has been disconnected.
Citation
Mashad Uddin Saleh, Joel B. Harley, Naveen Kumar Tumkur Jayakumar, Samuel Kingston, Evan Benoit, Michael A. Scarpulla, and Cynthia Furse, "Reflectometry on Asymmetric Transmission Line Systems," Progress In Electromagnetics Research M, Vol. 89, 121-130, 2020.
doi:10.2528/PIERM19110702
References

1. Pandey, G., E. T. Thostenson, and D. Heider, "Electric time domain reflectometry sensors for non-invasive structural health monitoring of glass fiber composites," Progress In Electromagnetics Research, Vol. 137, 551-564, 2013.
doi:10.2528/PIER13020611

2. Furse, C., Y. C. Chung, C. Lo, and P. Pendayala, "A critical comparison of reflectometry methods for location of wiring faults," Smart Structures and Systems, Vol. 2, No. 1, 25-46, 2006.
doi:10.12989/sss.2006.2.1.025

3. Zhang, X., M. Zhang, and D. Liu, "Reconstruction of faulty cable network using time-domain reflectometry," Progress In Electromagnetics Research, Vol. 136, 457-478, 2013.
doi:10.2528/PIER12121402

4. Harley, J. B., M. U. Saleh, S. Kingston, M. A. Scarpulla, and C. Furse, "Fast transient simulations for multi-segment transmission lines with a graphical model," Progress In Electromagnetics Research, Vol. 165, 67-82, 2019.
doi:10.2528/PIER19042105

5. Saleh, M. U., J. LaCombe, N. K. T. Jayakumar, S. Kingston, J. Harley, C. Furse, and M. Scarpulla, "Signal propagation through piecewise transmission lines for interpretation of reflectometry in photovoltaic systems," IEEE Journal of Photovoltaics, Vol. 9, No. 2, 506-512, 2018.
doi:10.1109/JPHOTOV.2018.2884011

6. Smith, P., C. Furse, and J. Gunther, "Analysis of spread spectrum time domain reflectometry for wire fault location," IEEE Sensors Journal, Vol. 5, No. 6, 1469-1478, 2005.
doi:10.1109/JSEN.2005.858964

7. Tripathi, V. K., "Asymmetric coupled transmission lines in an inhomogeneous medium," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, No. 9, 734-739, 1975.
doi:10.1109/TMTT.1975.1128665

8. Oraizi, H. and M. S. Esfahlan, "Miniaturization of wilkinson power dividers by using defected ground structures," Progress In Electromagnetics Research Letters, Vol. 4, 113-120, 2008.
doi:10.2528/PIERL08060701

9. Furse, C., P. Smith, M. Safavi, and C. Lo, "Feasibility of spread spectrum sensors for location of arcs on live wires," IEEE Sensors Journal, Vol. 5, No. 6, 1445-1450, 2005.
doi:10.1109/JSEN.2005.858900

10. Staszek, K., S. Gruszczynski, and K. Wincza, "Six-port reflectometer providing enhanced power distribution," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 3, 939-951, 2016.

11. Smaıl, M.-K., T. Hacib, L. Pichon, and F. Loete, "Detection and location of defects in wiring networks using time-domain reflectometry and neural networks," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1502-1505, 2011.
doi:10.1109/TMAG.2010.2089503

12. "Spec 5851 SunGen XLPE, photovoltaic wire, 2000 V, UL type PV or 1000 V, CSA RPVU90, single conductor, copper,", [Online]. Available: http://dtsheet.com/doc/1724396/spec-5851-sungen-xlpe–photovoltaic-wire–2000-v–ul-type, Accessed: Aug. 23, 2018.
doi:10.1109/TMAG.2010.2089503

13. Jayakumar, N. K. T., E. Benoit, S. Kingston, M. U. Saleh, M. Scarpulla, J. Harley, and C. Furse, "Post-processing for improved accuracy and resolution of spread spectrum time domain reflectometry (SSTDR)," IEEE Sensors Letters, 2019.

14. "Amazon.com: Sun YOBA 20 Pairs MC4 cable connectors male/female safety seal ring waterproof solar panel cable connectors black: Garden & outdoor,", [Online]. Available: https://www.amazon.com/Sun-YOBA-Connector-Waterproof-Connectors/dp/B074VB8CW5/.

15. "Live cable fault detection by livewire innovation,", https://www.livewireinnovation.com/, Accessed: May 07, 2018.

16. Pozar, D. M., Microwave Engineering, Wiley, 2012.

17. Furse, C., N. K. T. Jayakumar, E. Benoit, M. U. Saleh, J. LaCombe, M. Scarpulla, J. Harley, S. Kingston, B.Waddoups, and C. Deline, "Spread spectrum time domain reflectometry for complex impedances: Application to PV arrays," 2018 IEEE Autotestcon. IEEE, 1-4, 2018.

18. Griffiths, L. A., R. Parakh, C. Furse, and B. Baker, "The invisible fray: A critical analysis of the use of reflectometry for fray location," IEEE Sensors Journal, Vol. 6, No. 3, 697-706, 2006.
doi:10.1109/JSEN.2006.874017