1. Gupta, N. and R. Singh, "An annular ring microstrip patch antenna for multiband applications," International Journal of Engineering Research and Technology, Vol. 4, 1087-1091, 2015. Google Scholar
2. Vasconcelos, C. F. L., S. G. da Silva, M. R. M. L. Albuquerque, J. de Ribamar Silva Oliveira, and A. G. d’Assuncao, "Annular ring microstrip patch antenna on a double dielectric anistropic substrate," PIERS 2009 in Moscow Proceedings, 18-21, Moscow, Russia, August 18–21, 2009. Google Scholar
3. Kaur, H. and M. Aggawal, "Design of microstip patch antenna by introducing defected ground structure," International Journal of Advanced Computer Science and Application, Vol. 99, 14-24, 2018.
doi:10.5120/ijca2018918019 Google Scholar
4. Saturday, J., M. Udofia, et al. "Design of dual band microstrip antenna using reactive loading technique," Mathematical and Software Engineering, Vol. 2, 114-121, 2016. Google Scholar
5. Costantine, J., et al. "Reconfigurable antenna design and application," Proceeding of the IEEE, Vol. 103, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000 Google Scholar
6. Azizi, M. K., M. A. Ksiksi, H. Ajlani, and A. Gharsallah, "Terahertz graphene-based reconfigurable patch antenna," Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017.
doi:10.2528/PIERC16111401 Google Scholar
7. Mazlouman, S., M. Soleimani, et al. "Pattern reconfigurable square ring patch antenna actuated by hemispherical dielectric elastomer," Electronics Letters, Vol. 47, 164-165, 2011.
doi:10.1049/el.2010.3585 Google Scholar
8. Surface, H., Y. Huang, et al. "Design of a beam reconfigurable THz antenna with graphene-based switchable," IEEE Transactions on Nanotechnology, Vol. 11, 836-842, 2012.
doi:10.1109/TNANO.2012.2202288 Google Scholar
9. Christos, G., et al. "Reconfigurable antenna for wireless and space application," Proceeding IEEE, Vol. 100, 2250-2261, 2012.
doi:10.1109/JPROC.2012.2188249 Google Scholar
10. Georgakilas, V., Functionalisation of Graphene, 21-23, Wiley-VCH, 2014.
doi:10.1002/9783527672790.ch2
11. Kuman, K., et al. Graphene-based Polymer, 8-11, Springer, 2015.
12. Choi, W. and J. Lee, "Graphene synthesis and application," Nanomaterials and Their Application, 10-13, 2012. Google Scholar
13. Liang, T., Y. Kong, et al. "From solid carbon sources to graphene," Chinese Journal of Chemistry, Vol. 34, 32-40, 2015.
doi:10.1002/cjoc.201500429 Google Scholar
14. Jang, S., E. Hwang, et al. "Graphene-graphene oxide floating gate transistor memory," Small Nano Micro, Vol. 11, 311-318, 2015. Google Scholar
15. Dong, Y. and P. Liu, "Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity," IEEE Antennas and Propagation Society, Vol. 15, 1541-1544, 2016. Google Scholar
16. Zhang, H. and Y. Jiang, "A broadband terahertz antenna using graphene," 11th International Symposuim on Antennas, Propagation and EM Theory (ISDPE), 149-152, 2016. Google Scholar
17. Inum, R., M. Rana, et al. "Performance analysis of graphene based nanodipole antenna on staked substrate," 2nd International Conference on Electrical Computer and Telecomunication Engineering (ICECTE), 1-4, 2016. Google Scholar
18. Bala, R., A. Marwaha, et al. "Investigation of graphene based miniaturized terahertz antenna for novel substrate materials," Engineering Science and Technology, an International Journal, 531-537, 2015. Google Scholar
19. Hlali, A., Z. Houaneb, and H. Zairi, "Dual-band reconfigurable graphene-based patch antenna in terahertz band: Design, analysis and modeling using WCIP method," Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018.
doi:10.2528/PIERC18080107 Google Scholar
20. Hlali, A., Z. Houneb, et al. "Tunable filter based on hybrid metal-graphene structures over an ultrawide terahertz band using an improved wave concept iterative process method," Optik, Vol. 181, 223-231, 2019.
doi:10.1016/j.ijleo.2018.12.091 Google Scholar