Vol. 89
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-27
Reconfigurable Graphene Annular Ring Antenna for Medical and Imaging Applications
By
Progress In Electromagnetics Research M, Vol. 89, 53-62, 2020
Abstract
In this article, we design a reconfigurable bandwidth based on a concentric ring slot antenna using graphene. The developed antenna has good agreement between simulated and experimental results. The use of graphene in Terahertz (THz) has shown better performance than metal, and the variation in the chemical potential of graphene provides excellent performance properties, good return loss reaching -33.288 dB, bandwidth reconfiguration from 255 GHz to 406 GHz, and a good gain. These results are promising for THz applications and particularly for the application of medical imaging. The modeling and validation are performed using the CST Simulator.
Citation
Hamza Ben Krid, Zied Houaneb, and Hassen Zairi, "Reconfigurable Graphene Annular Ring Antenna for Medical and Imaging Applications," Progress In Electromagnetics Research M, Vol. 89, 53-62, 2020.
doi:10.2528/PIERM19110803
References

1. Gupta, N. and R. Singh, "An annular ring microstrip patch antenna for multiband applications," International Journal of Engineering Research and Technology, Vol. 4, 1087-1091, 2015.

2. Vasconcelos, C. F. L., S. G. da Silva, M. R. M. L. Albuquerque, J. de Ribamar Silva Oliveira, and A. G. d’Assuncao, "Annular ring microstrip patch antenna on a double dielectric anistropic substrate," PIERS 2009 in Moscow Proceedings, 18-21, Moscow, Russia, August 18–21, 2009.

3. Kaur, H. and M. Aggawal, "Design of microstip patch antenna by introducing defected ground structure," International Journal of Advanced Computer Science and Application, Vol. 99, 14-24, 2018.
doi:10.5120/ijca2018918019

4. Saturday, J., M. Udofia, et al. "Design of dual band microstrip antenna using reactive loading technique," Mathematical and Software Engineering, Vol. 2, 114-121, 2016.

5. Costantine, J., et al. "Reconfigurable antenna design and application," Proceeding of the IEEE, Vol. 103, 424-437, 2015.
doi:10.1109/JPROC.2015.2396000

6. Azizi, M. K., M. A. Ksiksi, H. Ajlani, and A. Gharsallah, "Terahertz graphene-based reconfigurable patch antenna," Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017.
doi:10.2528/PIERC16111401

7. Mazlouman, S., M. Soleimani, et al. "Pattern reconfigurable square ring patch antenna actuated by hemispherical dielectric elastomer," Electronics Letters, Vol. 47, 164-165, 2011.
doi:10.1049/el.2010.3585

8. Surface, H., Y. Huang, et al. "Design of a beam reconfigurable THz antenna with graphene-based switchable," IEEE Transactions on Nanotechnology, Vol. 11, 836-842, 2012.
doi:10.1109/TNANO.2012.2202288

9. Christos, G., et al. "Reconfigurable antenna for wireless and space application," Proceeding IEEE, Vol. 100, 2250-2261, 2012.
doi:10.1109/JPROC.2012.2188249

10. Georgakilas, V., Functionalisation of Graphene, 21-23, Wiley-VCH, 2014.
doi:10.1002/9783527672790.ch2

11. Kuman, K., et al. Graphene-based Polymer, 8-11, Springer, 2015.

12. Choi, W. and J. Lee, "Graphene synthesis and application," Nanomaterials and Their Application, 10-13, 2012.

13. Liang, T., Y. Kong, et al. "From solid carbon sources to graphene," Chinese Journal of Chemistry, Vol. 34, 32-40, 2015.
doi:10.1002/cjoc.201500429

14. Jang, S., E. Hwang, et al. "Graphene-graphene oxide floating gate transistor memory," Small Nano Micro, Vol. 11, 311-318, 2015.

15. Dong, Y. and P. Liu, "Dual-band reconfigurable terahertz patch antenna with graphene-stack-based backing cavity," IEEE Antennas and Propagation Society, Vol. 15, 1541-1544, 2016.

16. Zhang, H. and Y. Jiang, "A broadband terahertz antenna using graphene," 11th International Symposuim on Antennas, Propagation and EM Theory (ISDPE), 149-152, 2016.

17. Inum, R., M. Rana, et al. "Performance analysis of graphene based nanodipole antenna on staked substrate," 2nd International Conference on Electrical Computer and Telecomunication Engineering (ICECTE), 1-4, 2016.

18. Bala, R., A. Marwaha, et al. "Investigation of graphene based miniaturized terahertz antenna for novel substrate materials," Engineering Science and Technology, an International Journal, 531-537, 2015.

19. Hlali, A., Z. Houaneb, and H. Zairi, "Dual-band reconfigurable graphene-based patch antenna in terahertz band: Design, analysis and modeling using WCIP method," Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018.
doi:10.2528/PIERC18080107

20. Hlali, A., Z. Houneb, et al. "Tunable filter based on hybrid metal-graphene structures over an ultrawide terahertz band using an improved wave concept iterative process method," Optik, Vol. 181, 223-231, 2019.
doi:10.1016/j.ijleo.2018.12.091