1. Martellosio, A., M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti, F. Svelto, P. E. Summers, G. Renne, and M. Bellomi, "0.5–50 GHz dielectric characterisation of breast cancer tissues," Electronics Letters, Vol. 51, No. 13, 974-975, 2015.
doi:10.1049/el.2015.1199 Google Scholar
2. Gavazzi, S., P. Limone, G. De Rosa, F. Molinari, and G. Vecchi, "Comparison of microwave dielectric properties of human normal, benign and malignant thyroid tissues obtained from surgeries: A preliminary study," Biomedical Physics & Engineering Express, Vol. 4, No. 4, 047 003, 2018.
doi:10.1088/2057-1976/aa9f77 Google Scholar
3. Ruvio, G., J. Eaton-Evans, A. Shahzad, and M. O’Halloran, "Numerical evaluation of microwave thermal ablation to treat small adrenocortical masses," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 3, e21236, 2018.
doi:10.1002/mmce.21236 Google Scholar
4. Ley, S., S. Schilling, O. Fiser, J. Vrba, J. Sachs, and M. Helbig, "Ultra-wideband temperature dependent dielectric spectroscopy of porcine tissue and blood in the microwave frequency range," Sensors, Vol. 19, No. 7, 1707, 2019.
doi:10.3390/s19071707 Google Scholar
5. Chakarothai, J., K. Wake, and S. Watanabe, "Convergence of a single-frequency FDTD solution in numerical dosimetry," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 3, 707-714, 2016. Google Scholar
6. Debye, P., "Part i. Dielectric constant. energy absorption in dielectrics with polar molecules," Transactions of the Faraday Society, Vol. 30, 679-684, 1934.
doi:10.1039/tf9343000679 Google Scholar
7. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics i. Alternating current characteristics," The Journal of Chemical Physics, Vol. 9, No. 4, 341-351, 1941.
doi:10.1063/1.1750906 Google Scholar
8. Rekanos, I. T. and T. V. Yioultsis, "Approximation of Gr¨unwald-Letnikov fractional derivative for FDTD modeling of Cole-Cole media," IEEE Transactions on Magnetics, Vol. 50, No. 2, 181-184, 2014.
doi:10.1109/TMAG.2013.2281998 Google Scholar
9. Guo, B., J. Li, and H. Zmuda, "A new FDTD formulation for wave propagation in biological media with Cole-Cole model," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 12, 633-635, 2006.
doi:10.1109/LMWC.2006.885583 Google Scholar
10. Rekanos, I. T. and T. G. Papadopoulos, "An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3666-3674, 2010.
doi:10.1109/TAP.2010.2071365 Google Scholar
11. Barba, I., A. C. L. Cabeceira, M. Panizo, and J. Represa, "Modelling dispersive dielectrics in TLM method," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 14, No. 1, 15-30, 2001.
doi:10.1002/1099-1204(200101/02)14:1<15::AID-JNM393>3.0.CO;2-J Google Scholar
12. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. Iben Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018.
doi:10.2528/PIERM17110103 Google Scholar
13. Samko, S. G., A. A. Kilbas, O. I. Marichev, et al. Fractional Integrals and Derivatives, Vol. 1993, Gordon and Breach Science Publishers, Yverdon Yverdon-les-Bains, Switzerland, 1993.
14. "Chapter 8: Techniques in the fractional calculus," The Fractional Calculus, Ser. Mathematics in Science and Engineering, K. B. Oldham and J. Spanier (eds.), Vol. 111, 133–160, Elsevier, 1974. Google Scholar
15. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 35-46, Aug. 1997.
doi:10.1109/74.632994 Google Scholar
16. Engheta, N., "On fractional calculus and fractional multipoles in electromagnetism," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 4, 554-566, Apr. 1996.
doi:10.1109/8.489308 Google Scholar
17. Wharmby, A. W. and R. L. Bagley, "The application of the fractional calculus model for dispersion and absorption in dielectrics in terahertz waves," International Journal of Engineering Science, Vol. 93, 1-12, 2015.
doi:10.1016/j.ijengsci.2015.04.002 Google Scholar
18. Jin, H. and R. Vahldieck, "Direct derivations of TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell’s equations using centered differencing and averaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2554-2561, Dec. 1994.
doi:10.1109/22.339796 Google Scholar
19. Christopoulos, C., The Transmission-Line Modeling (TLM) Method in Electromagnetics, Morgan & Claypool, 2006.
20. Cabeceira, A. C. L., I. Barba, A. Grande, and J. Represa, "A 2D-TLM model for electromagnetic wave propagation in chiral media," Microwave and Optical Technology Letters, Vol. 46, No. 2, 180-182, 2005.
doi:10.1002/mop.20937 Google Scholar
21. Yaich, M. I. and M. Khalladi, "The far-zone scattering calculation of frequency-dependent materials objects using the tlm method," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 11, 1605-1608, Nov. 2002.
doi:10.1109/TAP.2002.803963 Google Scholar
22. Yaich, M. I., M. Kanjaa, S. E. Adraoui, K. Mounirh, and M. Khalladi, "An unsplit formulation of the 3D-PML absorbing boundary conditions for TLM-method in time domain," 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), 1-5, May 2018. Google Scholar
23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2005.
24. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in fdtd method through artificial anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 582-588, 2000.
doi:10.1109/22.842030 Google Scholar
25. Chakrabarti, A., et al. "Derivation of the errors involved in interpolation and their application to numerical quadrature formulae," Journal of Computational and Applied Mathematics, Vol. 92, No. 1, 59-68, 1998.
doi:10.1016/S0377-0427(98)00045-4 Google Scholar