Vol. 89
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-03
An ADE -TLM Modeling of Biological Tissues with Cole-Cole Dispersion Model
By
Progress In Electromagnetics Research M, Vol. 89, 161-169, 2020
Abstract
In this paper, an auxiliary differential equation (ADE) transmission line method (TLM) is proposed for broadband modeling of electromagnetic (EM) wave propagation in biological tissues with the Cole-Cole dispersion Model. The fractional derivative problem is surmounted by assuming a linear behavior of the polarization current when the time discretization is short enough. The polarization current density is approached using Lagrange extrapolation polynomial, and the fractional derivation is obtained according to Riemann definition of a fractional α-order derivative. Reflection coefficients at an air/muscle and air/fat tissues interfaces simulated in a 1-D domain are found in good agreement with those obtained from the analytic model over a broad frequency range, demonstrating the validity of the proposed approach.
Citation
Mohammed Kanjaa Khalid Mounirh Soufiane El Adraoui Otman El Mrabet Mohsine Khalladi , "An ADE -TLM Modeling of Biological Tissues with Cole-Cole Dispersion Model," Progress In Electromagnetics Research M, Vol. 89, 161-169, 2020.
doi:10.2528/PIERM19111203
http://www.jpier.org/PIERM/pier.php?paper=19111203
References

1. Martellosio, A., M. Pasian, M. Bozzi, L. Perregrini, A. Mazzanti, F. Svelto, P. E. Summers, G. Renne, and M. Bellomi, "0.5–50 GHz dielectric characterisation of breast cancer tissues," Electronics Letters, Vol. 51, No. 13, 974-975, 2015.
doi:10.1049/el.2015.1199

2. Gavazzi, S., P. Limone, G. De Rosa, F. Molinari, and G. Vecchi, "Comparison of microwave dielectric properties of human normal, benign and malignant thyroid tissues obtained from surgeries: A preliminary study," Biomedical Physics & Engineering Express, Vol. 4, No. 4, 047 003, 2018.
doi:10.1088/2057-1976/aa9f77

3. Ruvio, G., J. Eaton-Evans, A. Shahzad, and M. O’Halloran, "Numerical evaluation of microwave thermal ablation to treat small adrenocortical masses," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 3, e21236, 2018.
doi:10.1002/mmce.21236

4. Ley, S., S. Schilling, O. Fiser, J. Vrba, J. Sachs, and M. Helbig, "Ultra-wideband temperature dependent dielectric spectroscopy of porcine tissue and blood in the microwave frequency range," Sensors, Vol. 19, No. 7, 1707, 2019.
doi:10.3390/s19071707

5. Chakarothai, J., K. Wake, and S. Watanabe, "Convergence of a single-frequency FDTD solution in numerical dosimetry," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 3, 707-714, 2016.

6. Debye, P., "Part i. Dielectric constant. energy absorption in dielectrics with polar molecules," Transactions of the Faraday Society, Vol. 30, 679-684, 1934.
doi:10.1039/tf9343000679

7. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics i. Alternating current characteristics," The Journal of Chemical Physics, Vol. 9, No. 4, 341-351, 1941.
doi:10.1063/1.1750906

8. Rekanos, I. T. and T. V. Yioultsis, "Approximation of Gr¨unwald-Letnikov fractional derivative for FDTD modeling of Cole-Cole media," IEEE Transactions on Magnetics, Vol. 50, No. 2, 181-184, 2014.
doi:10.1109/TMAG.2013.2281998

9. Guo, B., J. Li, and H. Zmuda, "A new FDTD formulation for wave propagation in biological media with Cole-Cole model," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 12, 633-635, 2006.
doi:10.1109/LMWC.2006.885583

10. Rekanos, I. T. and T. G. Papadopoulos, "An auxiliary differential equation method for FDTD modeling of wave propagation in Cole-Cole dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 11, 3666-3674, 2010.
doi:10.1109/TAP.2010.2071365

11. Barba, I., A. C. L. Cabeceira, M. Panizo, and J. Represa, "Modelling dispersive dielectrics in TLM method," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 14, No. 1, 15-30, 2001.
doi:10.1002/1099-1204(200101/02)14:1<15::AID-JNM393>3.0.CO;2-J

12. Mounirh, K., S. El Adraoui, Y. Ekdiha, M. Iben Yaich, and M. Khalladi, "Modeling of dispersive chiral media using the ADE-TLM method," Progress In Electromagnetics Research M, Vol. 64, 157-166, 2018.
doi:10.2528/PIERM17110103

13. Samko, S. G., et al., Fractional Integrals and Derivatives, Vol. 1993, Gordon and Breach Science Publishers, Yverdon Yverdon-les-Bains, Switzerland, 1993.

14., "Chapter 8: Techniques in the fractional calculus," The Fractional Calculus, Ser. Mathematics in Science and Engineering, K. B. Oldham and J. Spanier (eds.), Vol. 111, 133–160, Elsevier, 1974.

15. Engheta, N., "On the role of fractional calculus in electromagnetic theory," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 35-46, Aug. 1997.
doi:10.1109/74.632994

16. Engheta, N., "On fractional calculus and fractional multipoles in electromagnetism," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 4, 554-566, Apr. 1996.
doi:10.1109/8.489308

17. Wharmby, A. W. and R. L. Bagley, "The application of the fractional calculus model for dispersion and absorption in dielectrics in terahertz waves," International Journal of Engineering Science, Vol. 93, 1-12, 2015.
doi:10.1016/j.ijengsci.2015.04.002

18. Jin, H. and R. Vahldieck, "Direct derivations of TLM symmetrical condensed node and hybrid symmetrical condensed node from Maxwell’s equations using centered differencing and averaging," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 12, 2554-2561, Dec. 1994.
doi:10.1109/22.339796

19. Christopoulos, C., The Transmission-Line Modeling (TLM) Method in Electromagnetics, Morgan & Claypool, 2006.

20. Cabeceira, A. C. L., I. Barba, A. Grande, and J. Represa, "A 2D-TLM model for electromagnetic wave propagation in chiral media," Microwave and Optical Technology Letters, Vol. 46, No. 2, 180-182, 2005.
doi:10.1002/mop.20937

21. Yaich, M. I. and M. Khalladi, "The far-zone scattering calculation of frequency-dependent materials objects using the tlm method," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 11, 1605-1608, Nov. 2002.
doi:10.1109/TAP.2002.803963

22. Yaich, M. I., M. Kanjaa, S. E. Adraoui, K. Mounirh, and M. Khalladi, "An unsplit formulation of the 3D-PML absorbing boundary conditions for TLM-method in time domain," 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), 1-5, May 2018.

23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, 2005.

24. Juntunen, J. S. and T. D. Tsiboukis, "Reduction of numerical dispersion in fdtd method through artificial anisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 4, 582-588, 2000.
doi:10.1109/22.842030

25. Chakrabarti, A., et al., "Derivation of the errors involved in interpolation and their application to numerical quadrature formulae," Journal of Computational and Applied Mathematics, Vol. 92, No. 1, 59-68, 1998.
doi:10.1016/S0377-0427(98)00045-4