1. Huang, J. and J. A. Encinar, Reflectarray Antennas, John Wiley & Sons, 2007.
doi:10.1002/9780470178775
2. Carrasco, E., J. A. Encinar, and Y. Rahmat-Samii, "Reflectarray antennas: A review," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 16, 2016. Google Scholar
3. Headland, D., T. Niu, E. Carrasco, D. Abbott, S. Sriram, M. Bhaskaran, C. Fumeaux, and W. Withayachumnankul, "Terahertz reflectarrays and nonuniform metasurfaces," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 4, 1-18, 2017.
doi:10.1109/JSTQE.2016.2640452 Google Scholar
4. Niu, T., W. Withayachumnankul, B. S.-Y. Ung, H. Menekse, M. Bhaskaran, S. Sriram, and C. Fumeaux, "Experimental demonstration of reflectarray antennas at terahertz frequencies," Opt. Express, Vol. 21, 2875-2889, 2013.
doi:10.1364/OE.21.002875 Google Scholar
5. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-nearzero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Vol. 75, No. 15, 155410, 2007.
doi:10.1103/PhysRevB.75.155410 Google Scholar
6. Massaouti, M., A. Basharin, M. Kafesaki, M. Acosta, R. Merino, V. Orera, E. Economou, C. Soukoulis, and S. Tzortzakis, "Eutectic epsilon-near-zero metamaterial terahertz waveguides," Optics Letters, Vol. 38, No. 7, 1140-1142, 2013.
doi:10.1364/OL.38.001140 Google Scholar
7. Torres, V., V. Pacheco-Pena, P. Rodrıguez-Ulibarri, M. Navarro-Cıa, M. Beruete, M. Sorolla, and N. Engheta, "Terahertz epsilon-near-zero graded-index lens," Optics Express, Vol. 21, No. 7, 9156-9166, 2013.
doi:10.1364/OE.21.009156 Google Scholar
8. Mousavi Roknabadi, S. M., A. Jafargholi, S. A. Mirtaheri, and M. Kamyab, "Easily implemented miniaturized ENZ metamaterial medium using spiral inductors," 20th Iranian Conference on Electric Engineering, Tehran, Iran, 2012. Google Scholar
9. Vakil, A. and N. Engheta, "Transformation optics using graphene," Science, Vol. 332, No. 6035, 1291-1294, 2011.
doi:10.1126/science.1202691 Google Scholar
10. Carrasco, E. and J. Perruisseau-Carrier, "Reflectarray antenna at terahertz using graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 253-256, 2013.
doi:10.1109/LAWP.2013.2247557 Google Scholar
11. Carrasco, E., M. Tamagnone, and J. Perruisseau-Carrier, "Tunable graphene reflective cells for thz reflectarrays and generalized law of reflection," Applied Physics Letters, Vol. 102, No. 10, 104103, 2013.
doi:10.1063/1.4795787 Google Scholar
12. Biswas, S. R., C. E. Guti’errez, A. Nemilentsau, I.-H. Lee, S.-H. Oh, P. Avouris, and T. Low, "Tunable graphene metasurface reflectarray for cloaking, illusion, and focusing," Physical Review Applied, Vol. 9, No. 3, 034021, 2018.
doi:10.1103/PhysRevApplied.9.034021 Google Scholar
13. Esquius-Morote, M., J. S. G’omez-D´ı, J. Perruisseau-Carrier, et al. "Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz," IEEE Transactions on Terahertz Science and Technology, Vol. 4, No. 1, 116-122, 2014.
doi:10.1109/TTHZ.2013.2294538 Google Scholar
14. Deng, L., Y. Wu, C. Zhang, W. Hong, B. Peng, J. Zhu, and S. Li, "Manipulating of differentpolarized reflected waves with graphene-based plasmonic meta-surfaces in terahertz regime," Scientific Reports, Vol. 7, No. 1, 10558, 2017.
doi:10.1038/s41598-017-10726-y Google Scholar
15. Chang, Z., B. You, L.-S. Wu, M. Tang, Y.-P. Zhang, and J.-F. Mao, "A reconfigurable graphene reflectarray for generation of vortex thz waves," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1537-1540, 2016.
doi:10.1109/LAWP.2016.2519545 Google Scholar
16. Gonzalez, D. G., G. E. Pollon, and J. F. Walker, "Microwave phasing structures for electromagnetically emulating reflective surfaces and focusing elements of selected geometry,", Patent US 4905014, Feb. 1990. Google Scholar
17. Pozar, D. M. and T. A. Metzler, "Analysis of a reflectarray antenna using microstrip patches of variable size," Electronics Letters, Vol. 29, No. 8, 657-658, April 1993.
doi:10.1049/el:19930440 Google Scholar
18. Hanson, G. W., "Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene," Journal of Applied Physics, Vol. 103, No. 6, 064302, 2008.
doi:10.1063/1.2891452 Google Scholar
19. Novotny, L. and B. Hecht, Principles of Nano-Optics, Cambridge University Press, 2006.
doi:10.1017/CBO9780511813535
20. Pacheco-Pena, V., N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, "Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies," Physical Review Applied, Vol. 8, 034036, 2017.
doi:10.1103/PhysRevApplied.8.034036 Google Scholar
21. Morabito, A. F., L. Di Donato, and T. Isernia, "Orbital angular momentum antennas: Understanding actual possibilities through the aperture antennas theory," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 59-67, 2018.
doi:10.1109/MAP.2018.2796445 Google Scholar
22. Silveirinha, M. G., A. Alu, B. Edwards, and N. Engheta, "Overview of theory and applications of epsilon-near-zero materials," Proc. URSI General Assembly, 2008. Google Scholar