1. Liu, D., W. Hong, T. S. Rappaport, C. Luxey, and W. Hong, "What will 5G antennas and propagation be?," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6205-6212, 2017.
doi:10.1109/TAP.2017.2774707 Google Scholar
2. Malhotra, I., K. R. Jha, and G. Singh, "Terahertz antenna technology for imaging applications: A technical review," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 3, 271-290, 2018.
doi:10.1017/S175907871800003X Google Scholar
3. Guo, L., M. Deng, Q. Zhang, X. Zhang, and Z. Yuan, "Dual-polarized on-chip antenna for 300 GHz full-duplex communication system," International Journal of Antennas and Propagation, Vol. 2017, Article ID 2837629, 7 pages, 2017. Google Scholar
4. Balanis, C. A., "Antenna Theory: Analysis and Design," Wiley Publishers, Hoboken, 2017. Google Scholar
5. Ismail, M. Y. and N. H. Sulaiman, "Enhanced bandwidth reflectarray antenna using variable dual gap," International Conference on Instrumentation, Communication, Information Technology and Biomedical Engineering, IEEE, Bandung, Indonesia, 2011. Google Scholar
6. Florencio, R., R. R. Boix, and d J. A. Encinar, "Design of a reflectarray antenna at 300 GHz based on cells with three coplanar dipoles," 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), IEEE, 2013. Google Scholar
7. Munoz-Acevedo, A., M. Sierra-Castaner, and J. L. Besada, "Antenna measurement system at 300 GHz for the terasense project," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, 2010. Google Scholar
8. Rey, S., T. Merkle, A. Tessmann, and T. Kürner, "A phased array antenna with horn elements for 300 GHz communications," Proceedings of ISAP-2016, 122-123, IEEE, Okinawa, Japan, 2016. Google Scholar
9. Azizi, M. K., M. A. Ksiksi, H. Ajlani, and A. Gharsallah, "Terahertz graphene-based reconfigurable patch antenna," Progress In Electromagnetics Research Letters, Vol. 71, 69-76, 2017. Google Scholar
10. Chen, J., K. Yuan, L. Shen, X. Deng, L. Hong, and M. Yao, "Studies of terahertz wave propagation in realistic reentry plasma sheath," Progress In Electromagnetics Research, Vol. 157, 21-29, 2016.
doi:10.2528/PIER16061202 Google Scholar
11. Priebe, S., C. Jastrow, M. Jacob, T. Kleine-Ostmann, T. Schrader, and T. K¨urner, "Channel and propagation measurements at 300 GHz," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 5, May 2011.
doi:10.1109/TAP.2011.2122294 Google Scholar
12. Bankey, V. and N. Anvesh Kumar, "Design of a Yagi-Uda antenna with gain and bandwidth enhancement for Wi-Fi and Wi-Max applications," International Journal of Antennas (JANT), Vol. 2, No. 1, 1-14, January 2016. Google Scholar
13. Cai, R.-N., Y. Chuan, L. Shu, X.-Q. Zhang, X.-Y. Zhang, and X.-F. Liu, "Design and analysis of printed Yagi-Uda antenna and two-element array for WLAN applications," International Journal of Antennas and Propagation, Article Id 651789, 8 Pages, 2012. Google Scholar
14. Han, K., T. K. Nguyen, and I. Park, "Yagi-Uda antenna with U-shaped dipole for a THz photomixer," 34th International Conference on Infrared, Millimeter, and Terahertz Waves, 2009. Google Scholar
15. Mathew, P. K., "A three element Yagi Uda antenna for RFID systems," IJEDR, Vol. 2, No. 1, ISSN: 2321-9939, 2014. Google Scholar
16. Sethi, W. T., O. De Sagazan, H. Vettikalladi, H. Fathallah, and M. Himdi, "Yagi-Uda nantenna for 1550 nanometers optical communication systems," International Journal of Antennas and Propagation, Vol. 60, No. 9, 2236-2242, 2018. Google Scholar
17. Sharma, Y. and S. Nagpal, "Radiation pattern optimization of a 6 element Yagi-Uda antenna," IJREST International Journal of Research Review In Engineering Science & Technology, Vol. 5, No. 1, Issn 2278-6643, 2016. Google Scholar
18. Prasada Reddy, M., "Directional Yagi Uda antenna for VHF applications," International Journal of Advancements in Technology, Vol. 9, No. 3, Issn: 0976-4860, 2018. Google Scholar
19. Kamran Saleem, M., H. Vettikaladi, M. A. S. Alkanhal, and M. Himdi, "Lens antenna for wide angle beam scanning at 79 GHz for automotive short range radar applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2041-2046, Apr. 2017.
doi:10.1109/TAP.2017.2669726 Google Scholar
20. Rondineau, S., M. Himdi, and J. Sorieux, "A sliced spherical Luneburg lens," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 163-166, 2003.
doi:10.1109/LAWP.2003.819045 Google Scholar
21. Foster, R., D. Nagarkoti, J. Gao, B. Vial, F. Nicholls, C. Spooner, S. Haq, and Y. Hao, "Beam-steering performance of flat Luneburg lens at 60GHz for future wireless communications," International Journal of Antennas and Propagation, Article Id 7932434, 8 pages, 2017. Google Scholar
22. Vettikalladi, H., W. T. Sethi, A. F. Bin Abas, W. Ko, M. A. Alkanhal, and M. Himdi, "Sub-THz antenna for high-speed wireless communication systems," International Journal of Antennas and Propagation, Article ID 9573647, 9 pages, 2019. Google Scholar
23. Knyazev, S., A. Korotkov, B. Panchenko, and S. Shabunin, "Investigation of spherical and cylindrical Luneburg lens antennas by the Green’s function method," IEEE Radio and Antenna Days of the Indian Ocean, IEEE Radio, 2015. Google Scholar
24. Zhou, B., Y. Yang, H. Li, and T. J. Cui, "Beam-steering Vivaldi antenna based on partial Luneburg lens constructed with composite materials," Journal of Applied Physics, Vol. 110, 084908, 2011.
doi:10.1063/1.3651376 Google Scholar
25. Chen, H., Q. Cheng, A. Huang, J. Dai, H. Lu, J. Zhao, H. Ma, W. Jiang, and T. J. Cui, "Modified Luneburg lens based on metamaterials," International Journal of Antennas and Propagation, Article Id 902634, 6 pages, 2015. Google Scholar
26. Liang, M., W.-R. Ng, K. Chang, K. Gbele, M. E. Gehm, and H. Xin, "A 3-D Luneburg lens antenna fabricated by polymer jetting rapid prototyping," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1799-1807, 2014.
doi:10.1109/TAP.2013.2297165 Google Scholar
27. Pfeiffer, C. and A. Grbic, "A printed, broadband Luneburg lens antenna," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 9, 3055-3059, 2010.
doi:10.1109/TAP.2010.2052582 Google Scholar
28. Numan, A. B., J.-F. Frigon, and J.-J. Laurin, "Printed W-band multibeam antenna with Luneburg lens-based beamforming network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5614-5619, 2018.
doi:10.1109/TAP.2018.2860119 Google Scholar
29. IEEE Standard P1597 "Standard for validation of computational electromagnetics computer modeling and simulation --- Part 1, 2,", 2008. Google Scholar
30. Duffy, A. P., A. P., A. J. M. Martin, A. Orlandi, G. Antonini, T. M. Benson, and M. S.Woolfson, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part I --- The FSV method," IEEE Trans. on Electromagn. Compatibility, Vol. 48, No. 3, 449-459, Aug. 2006.
doi:10.1109/TEMC.2006.879358 Google Scholar
31. Orlandi, A., A. P. Duffy, B. Archambeault, G. Antonini, D. E. Coleby, and S. Connor, "Feature selective validation (FSV) for validation of computational electromagnetics (CEM). Part II --- Assessment of FSV performance," IEEE Trans. on Electromagn. Compatibility, Vol. 48, No. 3, 460-467, Aug. 2006.
doi:10.1109/TEMC.2006.879360 Google Scholar