Vol. 91
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-04
Exact Non-Reflecting Boundary Conditions with an FDTD Scheme for the Scalar Wave Equation in Waveguide Problems
By
Progress In Electromagnetics Research M, Vol. 91, 39-48, 2020
Abstract
Modeling wave propagation often requires a truncation of the computational domain to a smaller subdomain to keep computational cost reasonable. The mere volume of papers on absorbing boundary conditions indicates that a perfect solution is not available. A method is proposed that is exact, at least in the case of a time-domain finite-difference scheme for the scalar wave equation. The word `exact' is used in the sense that there is no difference between a computation on the truncated domain with this method and one on an enlarged domain with reflecting boundaries that are placed so far away that their reflections cannot reach the original domain within the modeled time span. Numerical tests in 1D produce stable results with central difference schemes from order 2 to 24 for the spatial discretization. The difference with a reference solution computed on an enlarged domain with the boundary moved sufficiently far away only contains accumulated numerical round-off errors. Generalization to more than one space dimension is feasible if there is a single non-reflecting boundary on one side of a rectangular domain or two non-reflecting boundaries at opposing sides, but not for a corner connecting non-reflecting boundaries. The reason is that the method involves recursion based on translation invariance in the direction perpendicular to the boundary, which does not hold in the last case. This limits the applicability of the method to, for instance, modeling waveguides.
Citation
William Alexander Mulder, "Exact Non-Reflecting Boundary Conditions with an FDTD Scheme for the Scalar Wave Equation in Waveguide Problems," Progress In Electromagnetics Research M, Vol. 91, 39-48, 2020.
doi:10.2528/PIERM19121202
References

1. Givoli, D., "Non-reflecting boundary conditions," Journal of Computational Physics, Vol. 94, No. 1, 1-29, 1991.
doi:10.1016/0021-9991(91)90135-8

2. Mulder, W. A., "Experiments with Higdon’s absorbing boundary conditions for a number of wave equations," Computational Geosciences, Vol. 1, No. 1, 85-108, 1997.
doi:10.1023/A:1011556926362

3. Tsynkov, S. V., "Numerical solution of problems on unbounded domains. A review," Applied Numerical Mathematics, Vol. 27, No. 4, 465-532, Special Issue on Absorbing Boundary Conditions, 1998.
doi:10.1016/S0168-9274(98)00025-7

4. Tourrette, L. and L. Halpern, Absorbing Boundaries and Layers, Domain Decomposition Methods: Applications to Large Scale Computers, Nova Science Publishers, Inc., 2001.

5. Givoli, D., "High-order local non-reflecting boundary conditions: A review," Wave Motion, Vol. 39, No. 4, 319-326, 2004.
doi:10.1016/j.wavemoti.2003.12.004

6. Antoine, X., E. Lorin, and Q. Tang, "A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations," Molecular Physics, Vol. 115, No. 15–16, 1861-1879, 2017.
doi:10.1080/00268976.2017.1290834

7. Gao, Y., H. Song, J. Zhang, and Z. Yao, "Comparison of artificial absorbing boundaries for acoustic wave equation modelling," Exploration Geophysics, Vol. 48, No. 1, 76-93, 2017.
doi:10.1071/EG15068

8. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159

9. Mulder, W. A. and B. Hak, "An ambiguity in attenuation scattering imaging," Geophysical Journal International, Vol. 178, No. 3, 1614-1624, 2009.
doi:10.1111/j.1365-246X.2009.04253.x

10. Ting, L. and M. J. Miksis, "Exact boundary conditions for scattering problems," The Journal of the Acoustical Society of America, Vol. 80, No. 6, 1825-1827, 1986.
doi:10.1121/1.394297

11. Givoli, D. and D. Cohen, "Nonreflecting boundary conditions based on Kirchhoff-type formulae," Journal of Computational Physics, Vol. 117, No. 1, 102-113, 1995.
doi:10.1006/jcph.1995.1048

12. Teng, Z.-H., "Exact boundary condition for time-dependent wave equation based on boundary integral," Journal of Computational Physics, Vol. 190, No. 2, 398-418, 2003.
doi:10.1016/S0021-9991(03)00281-X

13. Engquist, B. and A. Majda, "Radiation boundary conditions for acoustic and elastic wave calculations," Communications on Pure and Applied Mathematics, Vol. 32, No. 3, 313-357, 1979.
doi:10.1002/cpa.3160320303

14. Higdon, R. L., "Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation," Mathematics of Computation, Vol. 47, No. 176, 437-459, 1986.

15. Mur, G., "Total-field absorbing boundary conditions for the time-domain electromagnetic field equations," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, No. 2, 100-102, 1998.
doi:10.1109/15.673614

16. Komatitsch, D. and R. Martin, "An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation," Geophysics, Vol. 72, No. 5, SM155-SM167, 2007.
doi:10.1190/1.2757586

17. Zhebel, E., S. Minisini, A. Kononov, and W. A. Mulder, "A comparison of continuous mass-lumped finite elements with finite differences for 3-D wave propagation," Geophysical Prospecting, Vol. 62, No. 5, 1111-1125, 2014.
doi:10.1111/1365-2478.12138

18. Fornberg, B., "Generation of finite difference formulas on arbitrarily spaced grids," Mathematics of Computation, Vol. 51, No. 184, 699-706, 1988.
doi:10.1090/S0025-5718-1988-0935077-0

19. Higdon, R. L., "Numerical absorbing boundary conditions for the wave equation," Mathematics of Computation, Vol. 49, No. 179, 65-90, 1987.
doi:10.1090/S0025-5718-1987-0890254-1

20. Mulder, W. A., "Working around the corner problem in numerically exact non-reflecting boundary conditions for the wave equation," Conference Proceedings, 82nd EAGE Conference and Exhibition 2020, Amsterdam, The Netherlands, 2020.