Vol. 101
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-14
Receiving UWB Antenna for Wireless Capsule Endoscopy Communications
By
Progress In Electromagnetics Research C, Vol. 101, 53-69, 2020
Abstract
Wireless capsule endoscopy systems utilize a combination of hardware and software devices to ensure the healthcare of a human being. In praise of involved antennas in the overall medical system design, UWB (Ultra-Wideband) range occupies highest ranks in the literature. The low-band of UWB is regarded as the best frequency range, within the approved standards, to realize the better transmission of captured medical images by the capsule inside the SI tract, in terms of high resolution and low-path loss. A variety of passive capsules have been designed and made available in the literature, while the accurate design of the corresponding on-body antenna is lagging. For this purpose, this paper provides an extended study of a recently published on-body antenna operating at 3.75-4.25 GHz band. The measured antenna realizes good directivity of 5.78 dBi and 9.50 dBi towards the body without and with the cavity, respectively. The direction of the proposed on-body antenna beam is targeted to be mounted on the body surface. On-body simulations were run with CST Microwave Studio by involving an abdominal multi-layer model, and followed by navel and back areas of the voxel model to predict the antenna behavior close to different lossy body environments. Later, the antenna structure was measured next to a real human abdomen. Simulation results reveal that the proposed antenna with or without the cavity enables enhanced in-body communication when mounted on the abdomen with less path loss. This is supported by the low power totaling 20 dB at the SI (Small Intestine) tract. Furthermore, on-body measurements confirm the good antenna performance. Consequently, the planar compact antenna is regarded as a good on-body candidate for wireless capsule endoscopy systems.
Citation
Chaïmaâ Kissi, Mariella Särestöniemi, Timo Kumpuniemi, Sami Myllymäki, Marko Sonkki, Juha-Pekka Mäkelä, Mohamed Nabil Srifi, Heli Jantunen, and Carlos Pomalaza-Raez, "Receiving UWB Antenna for Wireless Capsule Endoscopy Communications," Progress In Electromagnetics Research C, Vol. 101, 53-69, 2020.
doi:10.2528/PIERC19122204
References

1. Bharadwaj, R., S. Swaisaenyakorn, C. G. Parini, J. C. Batchelor, and A. Alomainy, "Impulse radio ultra-wideband communications for localization and tracking of human body and limbs movement for healthcare applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7298-7309, 2017.

2. Strackx, M., E. D’Agostino, P. Leroux, and P. Reynaert, "Direct RF subsampling receivers enabling impulse-based UWB signals for breast cancer detection," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 62, No. 2, 144-148, 2015.

3. Wang, S., Y. Ji, D. Gibbins, and X. Yin, "Impact of dynamic wideband MIMO body channel characteristics on healthcare rehabilitation of walking," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 505-508, 2017.

4. Li, Y. and M. Zhang, "Study on a cylindrical sensor network for intelligent health monitoring and prognosis," IEEE Access, Vol. 6, 69195-69202, 2018.

5. Li, Y., L. Yang, W. Duan, and X. Zhao, "An implantable antenna design for an intelligent health monitoring system considering the relative permittivity and conductivity of the human body," IEEE Access, Vol. 7, 38236-38244, 2019.

6. Vispa, A., L. Sani, M. Paoli, A. Bigotti, G. Raspa, N. Ghavami, S. Caschera, M. Ghavami, M. Duranti, and G. Tiberi, "UWB device for breast microwave imaging: Phantom and clinical validations," Measurement, Vol. 146, 582-589, 2019.

7. Niendorf, T., T. Huelnhagen, L. Winter, and K. Paul, "13 — Human cardiac magnetic resonance at ultrahigh fields: Technical innovations, early clinical applications and opportunities for discoveries," Cardiovascular Magnetic Resonance (Third Edition), 142-160.e4, 2019.

8. Chen, C.-A., S.-L. Chen, C.-H. Lioa, and P. A. R. Abu, "Lossless CFA image compression chip design for wireless capsule endoscopy," IEEE Access, Vol. 7, 107047-107057, 2019.

9. Charfi, S., M. E. Ansari, and I. Balasingham, "Computer-aided diagnosis system for ulcer detection in wireless capsule endoscopy images," IET Image Process., Vol. 13, No. 6, 1023-1030, 2019.

10. Hoang, M. C., V. H. Le, J. Kim, E. Choi, B. Kang, J.-O. Park, and C.-S. Kim, "Untethered robotic motion and rotating blade mechanism for actively locomotive biopsy capsule endoscope," IEEE Access, Vol. 7, 93364-93374, 2019.

11. Munoz, F., G. Alici, H. Zhou, W. Li, and M. Sitti, "Analysis of magnetic interaction in remotely controlled magnetic devices and its application to a capsule robot for drug delivery," IEEE ASME Trans. Mechatron., Vol. 23, No. 1, 298-310, 2018.

12. Leung, B. H. K., C. C. Y. Poon, R. Zhang, Y. Zheng, C. K. W. Chan, P.W. Y. Chiu, J. Y. W. Lau, and J. J. Y. Sung, "A therapeutic wireless capsule for treatment of gastrointestinal haemorrhage by balloon tamponade effect," IEEE Trans. Biomed. Eng., Vol. 64, No. 5, 1106-1114, 2017.

13. Charthad, J., M. J.Weber, T. C. Chang, and A. Arbabian, "A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link," IEEE J. Solid-State Circuits, Vol. 50, No. 8, 1741-1753, 2015.

14. Barbi, M., C. G.-Pardo, A. Nevarez, V. P. Beltran, and N. Cardona, "UWB RSS-based localization for capsule endoscopy using a multilayer phantom and in vivo measurements," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5035-5043, 2019.

15. Shao, G., Y. Tang, L. Tang, Q. Dai, and Y.-X. Guo, "A novel passive magnetic localization wearable system for wireless capsule endoscopy," IEEE Sens. J., Vol. 19, No. 9, 3462-3472, 2019.

16. Alam, M. W., Md. M. Hasan, S. K. Mohammed, F. Deeba, and K. A.Wahid, "Are current advances of compression algorithms for capsule endoscopy enough? A technical review," IEEE Rev. Biomed. Eng., Vol. 10, 26-43, 2017.

17. Miah, Md. S., A. N. Khan, C. Icheln, K. Haneda, and K.-I. Takizawa, "Antenna system design for improved wireless capsule endoscope links at 433 MHz," IEEE Trans. Antennas Propag., Vol. 67, No. 4, 2687-2699, 2019.

18. Peng, Y., K. Saito, and K. Ito, "Dual-band antenna design for wireless capsule endoscopic image transmission in the MHz band based on impulse radio technology," IEEE J. Electromagn. RF Microw. Med. Biol., Vol. 3, No. 3, 158-164, 2019.

19. Duan, Z., L.-J. Xu, S. Gao, and W. Geyi, "Integrated design of wideband omnidirectional antenna and electronic components for wireless capsule endoscopy systems," IEEE Access, Vol. 6, 29626-29636, 2018.

20. Chu, H., P.-J. Wang, X.-H. Zhu, and H. Hong, "Antenna-in-package design and robust test for the link between wireless ingestible capsule and smart phone," IEEE Access, Vol. 7, 35231-35241, 2019.

21. Lei, W. and Y.-X. Guo, "Design of a dual-polarized wideband conformal loop antenna for capsule endoscopy systems," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 5706-5715, 2018.

22. IEEE Standard for Local and metropolitan area networks — Part 15.6: Wireless Body Area Networks, IEEE Std 802.15.6-2012.

23. ISO/IEC/IEEE International Standard — Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 15-6: Wireless body area network, ISO/IEC/IEEE 8802-15-6:2017(E).

24. Thotahewa, K. M. S., J.-M. Redoute, and M. R. Yuce, "Propagation, power absorption, and temperature analysis of UWB wireless capsule endoscopy devices operating in the human body," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 11, 3823-3833, 2015.

25. Dissanayake, T., M. R. Yuce, and C. Ho, "Design and evaluation of a compact antenna for implant-to-air UWB communication," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 153-156, 2009.

26. Anzai, D., K. Katsu, R. C. Santiago, Q. Wang, D. Plettemeier, J. Wang, and I. Balasingham, "Experimental evaluation of implant UWB-IR transmission with living animal for body area networks," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 1, 183-192, 2014.

27. Wang, Q., K. Wolf, and D. Plettemeier, "An UWB capsule endoscope antenna design for biomedical communications," 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), Rome, Italy, 2010.

28. Ahmed, G., S. U. Islam, M. Shahid, A. Akhunzada, S. Jabbar, M. K. Khan, M. Riaz, and K. Han, "Rigorous analysis and evaluation of specific absorption rate (SAR) for mobile multimedia healthcare," IEEE Access, Vol. 6, 29602-29610, 2018.

29. Bisheh, K. M., M. G. Miab, and B. Zakeri, "Evaluation of different approximations for correlation coefficients in stochastic FDTD to estimate SAR variance in a human head model," IEEE Trans. Electromagn. Compat., Vol. 59, No. 2, 509-517, 2017.

30. Simbor, S. P., C. Andreu, C. G. Pardo, M. Frasson, and N. Cardona, "UWB path loss models for ingestible devices," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5025-5034, 2019.

31. Kissi, C., M. Sarestoniemi, T. Kumpuniemi, M. Sonkki, S. Myllymaki, M. N. Srifi, and C. P. Raez, "Low-UWB receiving antenna for WCE localization," 13th International Symposium on Medical Information and Communication Technology (ISMICT), Oslo, Norway, 2019.

32. https://www.rohacell.com/product/peekindustrial/downloads/rohacell%20hf%20product%20information. pdf.

33. https://www.itis.ethz.ch/virtual-population/tissue-properties/database/dielectric-properties/.

34. Akkus, O., A. Oguz, M. Uzunlulu, and K. Kizilgul, "Evaluation of skin and subcutaneous adipose tissue thickness for optimal insulin injection," J. Diabetes Metab., Vol. 3, No. 8, 1-5, 2012.

35. Sarestoniemi, M., C. P. Raez, C. Kissi, T. Kumpuniemi, M. Sonkki, M. Hamalainen, and J. Iinatti, "Fat in the Abdomen area as a propagation medium in WBAN applications," Body Area Networks: Smart IoT and Big Data for Intelligent Health Management, 14th EAI International Conference, BODYNETS 2019, 175-187, Florence, Italy, 2019.

36. C95.7-2014 — IEEE Recommended Practice for Radio Frequency Safety Programs, 3 kHz to 300 GHz, IEEE Std C95.7-2014 (Revision of IEEE Std C95.7-2005).

37. C95.2-2018 — IEEE Standard for Radio-Frequency Energy and Current-Flow Symbols, IEEE Std C95.2-2018 (Revision of IEEE Std C95.2-1999).

38. C95.3-2002 — IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz–300 GHz, IEEE Std C95.3-2002 (Revision of IEEE Std C95.3-1991), 1–126, 2003.

39. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., 27-68, John Wiley & Sons Ltd, 2005.

40. Tuovinen, T., M. Berg, K. Y. Yazdandoost, and J. Iinatti, "Ultra wideband loop antenna on contact with human body tissues," IET Microwaves, Antennas & Propagation, Vol. 7, No. 7, 588-596, 2013.