1. Bharadwaj, R., S. Swaisaenyakorn, C. G. Parini, J. C. Batchelor, and A. Alomainy, "Impulse radio ultra-wideband communications for localization and tracking of human body and limbs movement for healthcare applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7298-7309, 2017. Google Scholar
2. Strackx, M., E. D’Agostino, P. Leroux, and P. Reynaert, "Direct RF subsampling receivers enabling impulse-based UWB signals for breast cancer detection," IEEE Trans. Circuits Syst. II Express Briefs, Vol. 62, No. 2, 144-148, 2015. Google Scholar
3. Wang, S., Y. Ji, D. Gibbins, and X. Yin, "Impact of dynamic wideband MIMO body channel characteristics on healthcare rehabilitation of walking," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 505-508, 2017. Google Scholar
4. Li, Y. and M. Zhang, "Study on a cylindrical sensor network for intelligent health monitoring and prognosis," IEEE Access, Vol. 6, 69195-69202, 2018. Google Scholar
5. Li, Y., L. Yang, W. Duan, and X. Zhao, "An implantable antenna design for an intelligent health monitoring system considering the relative permittivity and conductivity of the human body," IEEE Access, Vol. 7, 38236-38244, 2019. Google Scholar
6. Vispa, A., L. Sani, M. Paoli, A. Bigotti, G. Raspa, N. Ghavami, S. Caschera, M. Ghavami, M. Duranti, and G. Tiberi, "UWB device for breast microwave imaging: Phantom and clinical validations," Measurement, Vol. 146, 582-589, 2019. Google Scholar
7. Niendorf, T., T. Huelnhagen, L. Winter, and K. Paul, "13 — Human cardiac magnetic resonance at ultrahigh fields: Technical innovations, early clinical applications and opportunities for discoveries," Cardiovascular Magnetic Resonance (Third Edition), 142-160.e4, 2019. Google Scholar
8. Chen, C.-A., S.-L. Chen, C.-H. Lioa, and P. A. R. Abu, "Lossless CFA image compression chip design for wireless capsule endoscopy," IEEE Access, Vol. 7, 107047-107057, 2019. Google Scholar
9. Charfi, S., M. E. Ansari, and I. Balasingham, "Computer-aided diagnosis system for ulcer detection in wireless capsule endoscopy images," IET Image Process., Vol. 13, No. 6, 1023-1030, 2019. Google Scholar
10. Hoang, M. C., V. H. Le, J. Kim, E. Choi, B. Kang, J.-O. Park, and C.-S. Kim, "Untethered robotic motion and rotating blade mechanism for actively locomotive biopsy capsule endoscope," IEEE Access, Vol. 7, 93364-93374, 2019. Google Scholar
11. Munoz, F., G. Alici, H. Zhou, W. Li, and M. Sitti, "Analysis of magnetic interaction in remotely controlled magnetic devices and its application to a capsule robot for drug delivery," IEEE ASME Trans. Mechatron., Vol. 23, No. 1, 298-310, 2018. Google Scholar
12. Leung, B. H. K., C. C. Y. Poon, R. Zhang, Y. Zheng, C. K. W. Chan, P.W. Y. Chiu, J. Y. W. Lau, and J. J. Y. Sung, "A therapeutic wireless capsule for treatment of gastrointestinal haemorrhage by balloon tamponade effect," IEEE Trans. Biomed. Eng., Vol. 64, No. 5, 1106-1114, 2017. Google Scholar
13. Charthad, J., M. J.Weber, T. C. Chang, and A. Arbabian, "A mm-sized implantable medical device (IMD) with ultrasonic power transfer and a hybrid bi-directional data link," IEEE J. Solid-State Circuits, Vol. 50, No. 8, 1741-1753, 2015. Google Scholar
14. Barbi, M., C. G.-Pardo, A. Nevarez, V. P. Beltran, and N. Cardona, "UWB RSS-based localization for capsule endoscopy using a multilayer phantom and in vivo measurements," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5035-5043, 2019. Google Scholar
15. Shao, G., Y. Tang, L. Tang, Q. Dai, and Y.-X. Guo, "A novel passive magnetic localization wearable system for wireless capsule endoscopy," IEEE Sens. J., Vol. 19, No. 9, 3462-3472, 2019. Google Scholar
16. Alam, M. W., Md. M. Hasan, S. K. Mohammed, F. Deeba, and K. A.Wahid, "Are current advances of compression algorithms for capsule endoscopy enough? A technical review," IEEE Rev. Biomed. Eng., Vol. 10, 26-43, 2017. Google Scholar
17. Miah, Md. S., A. N. Khan, C. Icheln, K. Haneda, and K.-I. Takizawa, "Antenna system design for improved wireless capsule endoscope links at 433 MHz," IEEE Trans. Antennas Propag., Vol. 67, No. 4, 2687-2699, 2019. Google Scholar
18. Peng, Y., K. Saito, and K. Ito, "Dual-band antenna design for wireless capsule endoscopic image transmission in the MHz band based on impulse radio technology," IEEE J. Electromagn. RF Microw. Med. Biol., Vol. 3, No. 3, 158-164, 2019. Google Scholar
19. Duan, Z., L.-J. Xu, S. Gao, and W. Geyi, "Integrated design of wideband omnidirectional antenna and electronic components for wireless capsule endoscopy systems," IEEE Access, Vol. 6, 29626-29636, 2018. Google Scholar
20. Chu, H., P.-J. Wang, X.-H. Zhu, and H. Hong, "Antenna-in-package design and robust test for the link between wireless ingestible capsule and smart phone," IEEE Access, Vol. 7, 35231-35241, 2019. Google Scholar
21. Lei, W. and Y.-X. Guo, "Design of a dual-polarized wideband conformal loop antenna for capsule endoscopy systems," IEEE Trans. Antennas Propag., Vol. 66, No. 11, 5706-5715, 2018. Google Scholar
22. IEEE Standard for Local and metropolitan area networks — Part 15.6: Wireless Body Area Networks, IEEE Std 802.15.6-2012.
23. ISO/IEC/IEEE International Standard — Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 15-6: Wireless body area network, ISO/IEC/IEEE 8802-15-6:2017(E).
24. Thotahewa, K. M. S., J.-M. Redoute, and M. R. Yuce, "Propagation, power absorption, and temperature analysis of UWB wireless capsule endoscopy devices operating in the human body," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 11, 3823-3833, 2015. Google Scholar
25. Dissanayake, T., M. R. Yuce, and C. Ho, "Design and evaluation of a compact antenna for implant-to-air UWB communication," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 153-156, 2009. Google Scholar
26. Anzai, D., K. Katsu, R. C. Santiago, Q. Wang, D. Plettemeier, J. Wang, and I. Balasingham, "Experimental evaluation of implant UWB-IR transmission with living animal for body area networks," IEEE Trans. Microw. Theory Tech., Vol. 62, No. 1, 183-192, 2014. Google Scholar
27. Wang, Q., K. Wolf, and D. Plettemeier, "An UWB capsule endoscope antenna design for biomedical communications," 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL 2010), Rome, Italy, 2010. Google Scholar
28. Ahmed, G., S. U. Islam, M. Shahid, A. Akhunzada, S. Jabbar, M. K. Khan, M. Riaz, and K. Han, "Rigorous analysis and evaluation of specific absorption rate (SAR) for mobile multimedia healthcare," IEEE Access, Vol. 6, 29602-29610, 2018. Google Scholar
29. Bisheh, K. M., M. G. Miab, and B. Zakeri, "Evaluation of different approximations for correlation coefficients in stochastic FDTD to estimate SAR variance in a human head model," IEEE Trans. Electromagn. Compat., Vol. 59, No. 2, 509-517, 2017. Google Scholar
30. Simbor, S. P., C. Andreu, C. G. Pardo, M. Frasson, and N. Cardona, "UWB path loss models for ingestible devices," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5025-5034, 2019. Google Scholar
31. Kissi, C., M. Sarestoniemi, T. Kumpuniemi, M. Sonkki, S. Myllymaki, M. N. Srifi, and C. P. Raez, "Low-UWB receiving antenna for WCE localization," 13th International Symposium on Medical Information and Communication Technology (ISMICT), Oslo, Norway, 2019. Google Scholar
32. https://www.rohacell.com/product/peekindustrial/downloads/rohacell%20hf%20product%20information. pdf.
33. https://www.itis.ethz.ch/virtual-population/tissue-properties/database/dielectric-properties/.
34. Akkus, O., A. Oguz, M. Uzunlulu, and K. Kizilgul, "Evaluation of skin and subcutaneous adipose tissue thickness for optimal insulin injection," J. Diabetes Metab., Vol. 3, No. 8, 1-5, 2012. Google Scholar
35. Sarestoniemi, M., C. P. Raez, C. Kissi, T. Kumpuniemi, M. Sonkki, M. Hamalainen, and J. Iinatti, "Fat in the Abdomen area as a propagation medium in WBAN applications," Body Area Networks: Smart IoT and Big Data for Intelligent Health Management, 14th EAI International Conference, BODYNETS 2019, 175-187, Florence, Italy, 2019. Google Scholar
36. C95.7-2014 — IEEE Recommended Practice for Radio Frequency Safety Programs, 3 kHz to 300 GHz, IEEE Std C95.7-2014 (Revision of IEEE Std C95.7-2005).
37. C95.2-2018 — IEEE Standard for Radio-Frequency Energy and Current-Flow Symbols, IEEE Std C95.2-2018 (Revision of IEEE Std C95.2-1999).
38. C95.3-2002 — IEEE Recommended Practice for Measurements and Computations of Radio Frequency Electromagnetic Fields With Respect to Human Exposure to Such Fields, 100 kHz–300 GHz, IEEE Std C95.3-2002 (Revision of IEEE Std C95.3-1991), 1–126, 2003.
39. Balanis, C. A., Antenna Theory Analysis and Design, 3rd Ed., 27-68, John Wiley & Sons Ltd, 2005.
40. Tuovinen, T., M. Berg, K. Y. Yazdandoost, and J. Iinatti, "Ultra wideband loop antenna on contact with human body tissues," IET Microwaves, Antennas & Propagation, Vol. 7, No. 7, 588-596, 2013. Google Scholar