1. Vaid, S. and A. Mittal, "Wide-band dual sense circularly polarized resonant cavity antenna for X band applications," Progress In Electromagnetics Research C, Vol. 88, 285-295, 2018. Google Scholar
2. Anwar, R. S., et al., "Frequency selective surfaces: A review," Applied Science, Vol. 8, No. 9, 1689, 2018.
doi:10.3390/app8091689 Google Scholar
3. Kotnala, A., P. Juyal, A. Mittal, and A. De, "Investigation of cavity reflex antenna using circular patch type FSS superstrate," Progress In Electromagnetics Research B, Vol. 42, 141-161, 2012.
doi:10.2528/PIERB12042504 Google Scholar
4. Vaid, S. and A. Mittal, "Wideband orthogonally polarized resonant cavity antenna with dual layer Jerusalem cross partially reflective surface," Progress In Electromagnetics Research C, Vol. 72, 105-113, 2017.
doi:10.2528/PIERC17011103 Google Scholar
5. Costa, F., A. Monorchio, and G. P. Vastante, "Tunable high-impedance surface with a reduced number of varactors," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 11-13, 2011.
doi:10.1109/LAWP.2011.2107723 Google Scholar
6. Costa, F., et al., "On the bandwidth ofhigh-impedance frequency selective surfaces," IEEE Antennas Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346 Google Scholar
7. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Vol. 29, Wiley Online Library, 2000.
doi:10.1002/0471723770
8. Janaswamy, R. and S.-W. Lee, "Scattering from dipoles loaded with diodes," IEEE Trans. on Antennas & Radio Wave Propagat., Vol. 36, 1649-1651, 1988.
doi:10.1109/8.9722 Google Scholar
9. Zhang, L., W. Li, G. Yang, and Q. Wu, A novel general structure of tuneable frequency selective surface without bias grid, National Natural Science Foundation of China (Grant No. 60971064), 2011.
10. Ourir, A., S. N. Burokur, and A. de Lustrac, "Electronically reconfigurable meta-material for compact directive cavity antennas," Electronics Letters, Vol. 43, No. 13, 698-700, IET, Jun. 21, 2007.
doi:10.1049/el:20071181 Google Scholar
11. Vaidya, A. R., R. K. Gupta, S. K. Mishra, and J. Mukherjee, "High-gain low side lobe level Fabry Perot cavity antenna with feed patch array," Progress In Electromagnetics Research C, Vol. 28, 223-238, 2012.
doi:10.2528/PIERC12031503 Google Scholar
12. Wang, H., et al., "Broadband tunability of polarization-insensitive absorber based on frequency selective surface," Scientific Reports, Vol. 6, 23081, 2016.
doi:10.1038/srep23081 Google Scholar
13. Tennant, A. and B. Chambers, "A single-layer tuneable microwave absorber using an active FSS," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 1, 46-47, Jan. 2004.
doi:10.1109/LMWC.2003.820639 Google Scholar
14. Hu, X.-D., X.-L. Zhou, L.-S. Wu, L. Zhou, and W.-Y. Yin, "A novel dual band Frequency Selective Surface (FSS),", 978-1-4244-2802-1/09/$25.00 c2009 IEEE. Google Scholar
15. Doken, B. and M. Kartal, "Tunable frequency surface design between 2.43 GHz and 6 GHz," An International Journal (ELELIJ), Vol. 6, No. 3, 1-8, Aug. 2017. Google Scholar
16. Costa, F. and A. Monorchio, "Design of subwavelength tunable and steerable Fabry-Perot/leaky wave antennas," Progress In Electromagnetics Research, Vol. 111, 467-481, 2011.
doi:10.2528/PIER10111702 Google Scholar
17. Qin, F., S. Gao, G. Wei, Q. Luo, C. Mao, C. Gu, J. Xu, and J. Li, "Wideband circularly polarized Fabry-Perot antenna [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 57, No. 5, 127-135, 2015.
doi:10.1109/MAP.2015.2470678 Google Scholar
18. Rahmani-Shams, Y., S. Mohammd-Ali-Nezhad, A. N. Yeganeh, and S. H. Sedighy, "Dual band low profile and compact tuneable frequency selective serface with wide tuning range," Journal of Applied Physics, Vol. 123, 235301, 2018.
doi:10.1063/1.5023449 Google Scholar
19. Doken, B. and M. Kartal, "An active frequency selective surface design having four different switchable frequency characteristics," Radio Engineering, Vol. 28, No. 1, 114-120, Apr. 2019. Google Scholar
20. Ourir, A., et al., Directive metamaterial-based subwavelength resonant cavity antennas — Applications for beam steering, Institut d'electronique fondamentale, Universite Paris Sud, UMR 8622 — CNRS, 91405 Orsay cedex, France, Available online Jun. 26, 2009.
21. Ghosh, S. and K. V. Srivastava, "Broadband polarization-insensitive tunable frequency selective surface for wideband shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 1, 166-172, 2017.
doi:10.1109/TEMC.2017.2706359 Google Scholar
22. Huang, X. G., Z. Shen, Q. Y. Feng, and B. Li, "Tunable 3-D bandpass frequency-selective structure with wide tuning range," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3297-3301, 2015.
doi:10.1109/TAP.2015.2428737 Google Scholar
23. Ucar, M. H. B., A. Sondas, and Y. E. Erdemli, "Switchable split-ring frequency selective surfaces," Progress In Electromagnetics Research B, Vol. 6, 65-79, 2008.
doi:10.2528/PIERB08031214 Google Scholar
24. Boccia, L., et al., "Tunable frequency-selective surfaces for beam-steering applications," Electronics Letters, Vol. 45, No. 24, 1213-1215, Nov. 19, 2009.
doi:10.1049/el.2009.2577 Google Scholar
25. Li, Y., L. Li, Y. Zhang, and C. Zhao, "Design and synthesis of multilayer frequency selective surface based on antenna-filter-antenna using Minkowski fractal structures," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 1, 133-141, 2014.
doi:10.1109/TAP.2014.2367523 Google Scholar