Vol. 90
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-04-15
Balanced Triple-Mode Microstrip Bandpass Filter Based on Double-Sided Parallel-Strip Line
By
Progress In Electromagnetics Research Letters, Vol. 90, 121-126, 2020
Abstract
This letter proposes a novel balanced triple-mode microstrip bandpass filter based on a double-sided parallel-strip line resonator for the first time. The triple-mode resonator is realized by a stub-loaded structure. Stripline-like structure is employed to excite the triple-mode resonator under differential mode operation. Meanwhile, good common mode suppression can also be achieved. For the demonstration, a balanced triple-mode microstrip filter was designed, fabricated and measured.
Citation
Xiao-Bang Ji, Qing Liu, and Mi Yang, "Balanced Triple-Mode Microstrip Bandpass Filter Based on Double-Sided Parallel-Strip Line," Progress In Electromagnetics Research Letters, Vol. 90, 121-126, 2020.
doi:10.2528/PIERL20010403
References

1. Deng, H., L. Sun, F. Liu, Y. Xue, and T. Xu, "Compact tunable balanced bandpass filter with constant bandwidth based on magnetically coupled resonators," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 4, 264-266, 2019.
doi:10.1109/LMWC.2019.2902328        Google Scholar

2. Xiao, J., X. Su, H. Wang, and J. Ma, "Compact microstrip balanced bandpass filter with adjustable transmission zeros," Electronics Letters, Vol. 55, No. 4, 212-214, 2019.
doi:10.1049/el.2018.7689        Google Scholar

3. Liu, Q., J. Wang, G. Zhang, L. Zhu, and W. Wu, "A new design approach for balanced bandpass filters on right-angled isosceles triangular patch resonator," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 1, 5-7, 2019.
doi:10.1109/LMWC.2018.2884829        Google Scholar

4. Yan, T., D. Lu, J. Wang, and X. Tang, "High-selectivity balanced bandpass filter with mixed electric and magnetic coupling," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 6, 398-400, 2016.
doi:10.1109/LMWC.2016.2562110        Google Scholar

5. Wu, R. T., S. Y. Zheng, W. J. Feng, Y. X. Li, and Y. L. Long, "Design of balanced filtering components based on isosceles right-angled triangular patch," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 9, No. 4, 736-744, 2019.
doi:10.1109/TCPMT.2018.2872588        Google Scholar

6. Shi, J. and Q. Xue, "Balanced bandpass filters using center-loaded half-wavelength resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 4, 970-977, 2010.
doi:10.1109/TMTT.2010.2042839        Google Scholar

7. Gu, H., L. Ge, and L. Xu, "Simple dual-mode balanced bandpass filter with high selectivity and extended common-mode noise suppression," Electronics Letters, Vol. 54, No. 13, 833-835, 2018.
doi:10.1049/el.2018.1246        Google Scholar

8. Feng, W., W. Che, and Q. Xue, "Balanced filters with wideband common mode suppression using dual-mode ring resonators," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 62, No. 6, 1499-1507, 2015.
doi:10.1109/TCSI.2015.2423752        Google Scholar

9. Guo, X., L. Zhu, and W. Wu, "A new concept of partial electric/magnetic walls for application in design of balanced bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 4, 1308-1315, 2019.
doi:10.1109/TMTT.2019.2892751        Google Scholar

10. Chen, X., R. Ma, L. Han, et al. "A novel differential dual-band bandpass filter based on stepped-impedance double-sided parallel-strip line," Electromagnetics, Vol. 31, No. 2, 117-126, 2011.
doi:10.1080/02726343.2011.548193        Google Scholar

11. Fernandez-Prieto, A., et al., "Compact balanced dual-band bandpass filter with magnetically coupled embedded resonators," IET Microwaves, Antennas & Propagation, Vol. 13, No. 4, 492-497, 2019.
doi:10.1049/iet-map.2018.5573        Google Scholar

12. Wang, X., Q. Xue, and W. Choi, "A novel ultra-wideband differential filter based on double-sided parallel-strip line," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 8, 471-473, 2010.
doi:10.1109/LMWC.2010.2050869        Google Scholar

13. Feng, W., W. Q. Che, T. F. Eibert, and Q. Xue, "Compact wideband differential bandpass filter based on the double-sided parallel-strip line and transversal signal-interaction concepts," IET Microwaves, Antennas & Propagation, Vol. 6, No. 2, 186-195, 2012.
doi:10.1049/iet-map.2011.0400        Google Scholar

14. Xu, K. D., H. Xu, Y. Liu, J. Ai, and Q. H. Liu, "Short- and open-stub loaded spiral resonator and its application in planar microstrip filters," IET Microwaves, Antennas & Propagation, Vol. 11, No. 3, 363-369, 2017.
doi:10.1049/iet-map.2016.0253        Google Scholar

15. Xiang, B. J., W. J. Liu, S. Y. Zheng, Y. M. Pan, Y. X. Li, and Y. L. Long, "Vias and stubs loaded patch and its applications in filter and rectifier designs," IEEE Access, Vol. 5, 7042-7054, 2017.
doi:10.1109/ACCESS.2017.2695367        Google Scholar

16. Zhang, S. and L. Zhu, "Compact and high-selectivity microstrip bandpass filters using triple-/quad-mode stub-loaded resonators," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 10, 522-524, 2011.
doi:10.1109/LMWC.2011.2166252        Google Scholar

17. Feng, L. P., L. Zhu, and Q. S. Wu, "Direct synthesis of compact wideband differential bandpass filter on composite triple-mode resonator," International Journal of RF and Microwave Computer-Aided Engineering, 2018, DOI: 10.1002/mmce.21521.        Google Scholar

18. Deng, H., Y. Zhao, Y. He, S. Jia, and M. Wang, "Compact dual-notched balanced UWB BPF with folded triple-mode slotline resonator," Electronics Letters, Vol. 50, No. 6, 447-449, 2014.
doi:10.1049/el.2013.4263        Google Scholar

19. Chen, C. J., C. H. Lee, and C. I. G. Hsu, "Balanced wideband BPF design using multi-mode slot-line resonator for MB-OFDM applications," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 11, 1419-1428, 2013.
doi:10.1080/09205071.2013.811040        Google Scholar

20. Guo, X., L. Zhu, K. Tam, and W. Wu, "Wideband differential bandpass filters on multimode slotline resonator with intrinsic common-mode rejection," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 5, 1587-1594, 2015.
doi:10.1109/TMTT.2015.2412111        Google Scholar