Vol. 90
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-06
A Low Profile Quadruple-Band Polarization Insensitive Metamaterial Absorber
By
Progress In Electromagnetics Research M, Vol. 90, 69-79, 2020
Abstract
In this paper, a quadruple-band metamaterial polarization-insensitive absorber with low profile is proposed. The proposed unit cell is composed of three conformal modified rings with square patches at corners. 10*10 periodic unit cells constitute the proposed metamaterial absorber. The absorber offers low profile, and overall dimensions are 100 mm*100 mm. The surface current distribution and equivalent circuit model are presented to explain the mechanism. The proposed structure is fabricated, and experiments are carried out to validate the design principle. The simulated and measured results show that the proposed structure exhibites four absorption peaks of 98.87%, 95.11%, 93.97%, and 99.99% under normal incidence at 8.16-8.29 GHz, 10.275-10.38 GHz, 14.255-14.38 GHz, and 15.465-15.7 GHz which cover X- and Ku-bands, respectively. The designed structure is exactly symmetrical which makes it insensitive to polarization angle variations. Furthermore, the four operating bands of the absorber can be adjusted independently which makes the design suitable for absorbing electromagnetic energy and reducing the radar cross-section (RCS) of target.
Citation
Ting Wu, Yan-Ming Ma, Juan Chen, and Li-Li Wang, "A Low Profile Quadruple-Band Polarization Insensitive Metamaterial Absorber," Progress In Electromagnetics Research M, Vol. 90, 69-79, 2020.
doi:10.2528/PIERM20010505
References

1. Furkan, D., K. Muharrem, U. Emin, D. Kemal, and S. Cumali, "Design of polarization and incident angle insensitive dual-band metamaterial absorber based on isotropic resonator," Progress In Electromagnetics Research, Vol. 144, 123-132, 2014.
doi:10.2528/PIER13111403

2. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterial cloak for microwaves," Nature Materials, Vol. 12, No. 1, 25-28, 2013.
doi:10.1038/nmat3476

3. Savin, A., R. Steigmann, A. Bruma, and R. Sturm, "An electromagnetic sensor with a metamaterials lens for nondestructive evaluation of composite materials," Sensors, Vol. 15, No. 7, 15903-15920, 2015.
doi:10.3390/s150715903

4. Lin, X. Q., T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Applied Physics Letters, Vol. 92, No. 13, 131904, 2008.
doi:10.1063/1.2896308

5. Yao, G., F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, "Dual-band tunable perfect metamaterial absorber in the THz range," Optics Express, Vol. 24, No. 2, 1518-1527, 2016.
doi:10.1364/OE.24.001518

6. Bian, B., S. Liu, S. Wang, et al. "Novel triple-band polarization-insensitive wide-angle ultra-thin microwave metamaterial absorber," Journal of Applied Physics, Vol. 114, No. 19, 194511, 2013.
doi:10.1063/1.4832785

7. Zhang, H. F., X. L. Tian, G. B. Liu, and X. R. Kong, "A gravity tailored broadband metamaterial absorber containing liquid dielectrics," IEEE Access, Vol. 7, 25827-25835, 2019.
doi:10.1109/ACCESS.2019.2900314

8. Wang, G.-D., J.-F. Chen, X.-W. Hu, Z.-Q. Chen, and M.-H. Liu, "Polarization-insensitive triple-band microwave metamaterial absorber based on rotated square rings," Progress In Electromagnetics Research, Vol. 145, 175-183, 2014.
doi:10.2528/PIER14010401

9. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

10. Akhlaghi, M. K., E. Schelew, and J. F. Young, "Commun waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation," Nature Communications, Vol. 6, 8233, 2015.
doi:10.1038/ncomms9233

11. Wang, H., V. Prasad Sivan, A. Mitchell, G. Rosengarten, P. Phelan, and L. Wang, "Highly efficient selective metamaterial absorber for high-temperature solar thermal energy harvesting," Solar Energy Materials and Solar Cells, Vol. 137, 235-242, 2015.
doi:10.1016/j.solmat.2015.02.019

12. Rufangura, P., C. Sabah, and J. Alloys Compd, "Wide-band polarization independent perfect metamaterial absorber based on concentric rings topology for solar cells application," Journal of Alloys and Compounds, Vol. 680, 473-479, 2016.
doi:10.1016/j.jallcom.2016.04.162

13. Ghosh, S., S. Bhattacharyya, D. Chaurasiya, and K. V. Srivastava, "Polarization-insensitive and wide-angle multilayer metamaterial absorbers with variable bandwidths," Electronics Letters, Vol. 51, 1050-1052, 2015.
doi:10.1049/el.2015.1167

14. Wang, B., S. Liu, B. Bian, Z. Mao, X. Liu, B. Ma, and L. Chen, "A novel ultrathin and broadband microwave metamaterial absorber," Journal of Applied Physics, Vol. 116, 094504, 2014.
doi:10.1063/1.4894824

15. Ghosh, S., S. Bhattacharyya, and K. V. Srivastava, "Bandwidth-enhancement of an ultra-thin polarization insensitive absorber," Microwave and Optical Technology Letters, Vol. 56, 350-355, 2014.
doi:10.1002/mop.28122

16. Bhattacharyya, S., S. Ghosh, and K. V. Srivastava, "Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band," Journal of Applied Physics, Vol. 114, 094514, 2013.
doi:10.1063/1.4820569

17. Ghosh, S., S. Bhattacharyya, Y. Kaiprath, and K. V. Srivastava, "Band-width-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model," Journal of Applied Physics, Vol. 115, 104503, 2014.
doi:10.1063/1.4868577

18. Yu, Z., S. Liu, C. Fang, et al. "Design, simulation, and fabrication of single-/dual-/triple band metamaterial absorber," Physica Scripta, Vol. 90, No. 6, 065501, 2015.
doi:10.1088/0031-8949/90/6/065501

19. Liu, X., C. Lan, B. Li, Q. Zhao, and J. Zhou, "Dual band metamaterial perfect absorber based on artificial dielectric `molecules'," Scientific Reports, Vol. 6, 1-6, 2016.

20. Yoo, M., H. K. Kim, and S. Lim, "Angular- and polarization-insensitive metamaterial absorber using subwavelength unit cell in multilayer technology," Antennas and Wireless Propagation Letters, Vol. 15, 414-417, 2016.
doi:10.1109/LAWP.2015.2448720

21. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

22. Lee, D., J. G. Hwang, D. Lim, T. Hara, and S. Lim, "Incident angle- and polarization-insensitive metamaterial absorber using circular sectors," Scientific Reports, Vol. 6, 27155, 2016.
doi:10.1038/srep27155

23. Zhai, H., C. Zhan, Z. Li, and C. Liang, "A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability," Antennas and Wireless Propagation Letters, Vol. 14, 241-244, 2015.
doi:10.1109/LAWP.2014.2361011

24. Chaurasiya, D., S. Ghosh, S. Bhattacharyya, A. Bhattacharya, and K. V. Srivastava, "Compact multi-band polarisation-insensitive metamaterial absorber," Microwaves Antennas and Propagation, Vol. 10, No. 1, 94-101, 2016.
doi:10.1049/iet-map.2015.0220

25. Sharma, S. K., et al. "Ultra-thin dual-band polarization-insensitive conformal metamaterial absorber," Microwave and Optical Technology Letters, Vol. 59, No. 2, 348-353, 2017.
doi:10.1002/mop.30285

26. Mishra, N., D. Choudhary, R. Chowdhury, K. Kumari, and R. Chaudhary, "An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications," IEEE Access, Vol. 5, 4370-4376, 2017.
doi:10.1109/ACCESS.2017.2675439

27. Mishra, N., K. Kumari, and R. K. Chaudhary, "An ultra-thin polarization independent quad-band microwave absorber-based on compact metamaterial structures for EMI/EMC applications," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 4, 422-429, 2018.
doi:10.1017/S1759078718000491

28. Reddy Thummaluru, S., N. Mishra, and R. K. Chaudhary, "Design and analysis of an ultrathin triple-band polarization independent metamaterial absorber," AEU - International Journal of Electronics and Communications, Vol. 82, 508-515, 2017.
doi:10.1016/j.aeue.2017.10.024

29. Kumari, K., N. Mishra, and R. K. Chaudhary, "Wide-angle polarization independent triple band absorber based on metamaterial structure for microwave frequency applications," Progress In Electromagnetics Research C, Vol. 76, 119-127, 2017.
doi:10.2528/PIERC17051703

30. Mishra, N. and R. K. Chaudhary, "Design and development of an ultrathin triple band microwave absorber using miniaturized metamaterial structure for near-unity absorption characteristics," Progress In Electromagnetics Research C, Vol. 94, 89-101, 2019.
doi:10.2528/PIERC19043002