Vol. 101
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-04-09
A Design of Antenna Array with Improved Performance for Future Smartphones
By
Progress In Electromagnetics Research C, Vol. 101, 1-12, 2020
Abstract
In this study, a new multiple-input-multiple-output (MIMO) antenna array is introduced for fifth-generation (5G) smartphones. Its schematic contains eight planar inverted-F antenna (PIFA) elements placed at edges of the mobile-phone mainboard with a 75×150×0.8 mm3 FR-4 substrate. The ground plane and antenna resonators are etched on the back layer of the mainboard. By employing arrow strips between the adjacent elements, the frequency bandwidth and isolation level of the PIFA radiators are improved. The proposed smartphone antenna array is designed to support the spectrum of commercial sub 6 GHz 5G communication and cover the frequency range of 3.25-3.85 GHz with isolation levels better than -15 dB. Due to compact size and corner placements of the PIFAs, the presented MIMO antenna array occupies a small part of the board. In addition, the proposed smartphone antenna array provides not only sufficing radiation coverage supporting different sides of the mainboard but also the polarization diversity. The MIMO performance and characteristics of the proposed smartphone antenna design in the presence of the user phantom are also discussed.
Citation
Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Yasir I. A. Al-Yasir, and Raed A. Abd-Alhameed, "A Design of Antenna Array with Improved Performance for Future Smartphones," Progress In Electromagnetics Research C, Vol. 101, 1-12, 2020.
doi:10.2528/PIERC20012003
References

1. Nadeem, Q. U. A., et al., "Design of 5G full dimension massive MIMO systems," IEEE Trans. Commun., Vol. 66, 726-740, 2018.
doi:10.1109/TCOMM.2017.2762685

2. Yang, H. H. and Y. Q. S. Quel, "Massive MIMO meet small cell," Springer Briefs in Electrical and Computer Engineering, 2017, DOI 10.1007/978-3-319-43715-6_2.

3. Osseiran, A., et al., "Scenarios for 5G mobile and wireless communications: The vision of the METIS project," IEEE Commun. Mag., Vol. 52, 26-35, 2014.
doi:10.1109/MCOM.2014.6815890

4. Parchin, N. O., et al., Microwave/RF Components for 5G Front-end Systems, 1-200, Avid Science, 2019.

5. Parchin, N. O. and R. A. Abd-Alhameed, "A compact Vivaldi antenna array for 5G channel sounding applications," EuCAP, 846, London, UK, 2018.

6. Ojaroudi, N., H. Ojaroudi, and N. Ghadimi, "Quad-band planar inverted-F antenna (PIFA) for wireless communication systems," Progress In Electromagnetics Research Letters, Vol. 45, 51-56, 2014.
doi:10.2528/PIERL14012403

7. Oliveri, G., et al., "Codesign of unconventional array architectures and antenna elements for 5G base stations," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6752-6767, Dec. 2017.
doi:10.1109/TAP.2017.2738065

8. Habaebi, M. H., M. Janat, and M. R. Islam, "Beam steering antenna array for 5G telecommunication systems applications,".
doi:10.1109/TAP.2017.2738065

8. Habaebi, M. H., M. Janat, and M. R. Islam, "Beam steering antenna array for 5G telecommunication systems applications," Progress In Electromagnetics Research M, Vol. 67, 197-207, 2018.
doi:10.2528/PIERM17091802

9. Comisso, M., et al., "3D multi-beam and null synthesis by phase-only control for 5G antenna arrays," Electronics, Vol. 8, 656, 2019.
doi:10.3390/electronics8060656

10. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A radiation-beam switchable antenna array for 5G smartphones," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 1769-1774, Xiamen, China, Dec. 17–20, 2019.

11. Parchin, N. O., R. A. Abd-Alhameed, and M. Shen, "A substrate-insensitive antenna array with broad bandwidth and high efficiency for 5G mobile terminals," 2019 Photonics & Electromagnetics Research Symposium — Fall (PIERS — Fall), 1764-1768, Xiamen, China, Dec. 17–20, 2019.

12. Jaber, M., M. A. Imran, R. Tafazolli, and A. Tukmanov, "5G backhaul challenges and emerging research directions: A survey," IEEE Access, Vol. 4, 1743-1766, Apr. 2016.
doi:10.1109/ACCESS.2016.2556011

13. Chen, Q., et al., "Single ring slot based antennas for metal-rimmed 4G/5G smartphones," IEEE Trans. Antennas Propag., Vol. 67, 1476-1487, 2018.

14. Ojaroudiparchin, N., et al., "Wide-scan phased array antenna fed by coax-to-microstriplines for 5G cell phones," 21st International Conference on Microwaves, Radar and Wireless Communications, Krakow, Poland, 2016.

15. Liu, Y., et al., "MIMO antenna array for 5G smartphone applications," 13th European Conference on Antennas and Propagation (EuCAP 2019), Krakow, Poland, 2019.

16. Al-Hadi, A. A., J. Ilvonen, R. Valkonen, and V. Viikan, "Eight-element antenna array for diversity and MIMO mobile terminal in LTE 3500 MHz band," Microwave Opt. Technol. Lett., Vol. 56, 1323-1327, 2014.
doi:10.1002/mop.28316

17. Ojaroudi Parchin, N., et al., "Dual-polarized MIMO antenna array design using miniaturized self-complementary structures for 5G smartphone applications," 13th European Conference on Antennas and Propagation (EuCAP), Krakow, Poland, Mar. 31–Apr. 5, 2019.

18. Wong, K. L., et al., "8-antenna and 16-antenna arrays using the quad-antenna linear array as a building block for the 3.5-GHz LTE MIMO operation in the smartphone," Microw. Opt. Technol. Lett., Vol. 58, 174-181, 2016.
doi:10.1002/mop.29527

19. Chang, L. Y., et al., "Polarization-orthogonal co-frequency dual antenna pair suitable for 5G MIMO smartphone with metallic bezels," IEEE Trans. Antennas Propag., Vol. 67, 5212-5220, 2019.
doi:10.1109/TAP.2019.2913738

20. Abdullah, M., Y.-L. Ban, K. Kang, M.-Y. Li, and M. Amin, "Eight-element antenna array at 3.5 GHz for MIMO wireless application," Progress In Electromagnetics Research C, Vol. 78, 209-217, 2017.
doi:10.2528/PIERC17082308

21. Zhao, X., S. P. Yeo, and L. C. Ong, "Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform," IEEE Trans. Antennas Propag., Vol. 66, 4485-4495, 2018.
doi:10.1109/TAP.2018.2851381

22. Parchin, N. O., et al., "Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications," IEEE Access, Vol. 9, 15612-15622, 2019.
doi:10.1109/ACCESS.2019.2893112

23. Xu, S., M. Zhang, H. Wen, and J. Wang, "Deep-subwavelength decoupling for MIMO antennas in mobile handsets with singular medium," Scientific Reports, Vol. 7, 12162, 2017.
doi:10.1038/s41598-017-11281-2

24. Sun, L., H. Feng, Y. Li, and Z. Zhang, "Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs," IEEE Trans. Antennas Propag., Vol. 66, 6364-6369, 2018.
doi:10.1109/TAP.2018.2864674

25. Li, M.-Y., et al., "Tri-polarized 12-antenna MIMO array for future 5G smartphone applications," IEEE Access, Vol. 6, 6160-6170, 2018.
doi:10.1109/ACCESS.2017.2781705

26. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 152-156, 2019.
doi:10.1109/LAWP.2018.2883428

27. Abdullah, M., et al., "High-performance multiple-input multiple-output antenna system for 5G mobile terminals," Electronics, Vol. 8, No. 1090, 1-16, 2019.

28. Jiang, W., B. Liu, Y. Cui, and W. Hu, "High-isolation eight-Element MIMO array for 5G smartphone applications," IEEE Access, Vol. 7, 34104-34112, 2019.
doi:10.1109/ACCESS.2019.2904647

29. Ojaroudi, N., et al., "Enhanced bandwidth of small square monopole antenna by using inverted U-shaped slot and conductor-backed plane," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 27, 685-690, 2012.

30. Parchin, N. O., et al., "8 × 8 MIMO antenna system with coupled-fed elements for 5G handsets," IEEE Proceeding of Antennas and Propagation Conference, Birmingham, UK, Nov. 2019.

31. Parchin, N. O., et al., "MM-wave phased array Quasi-Yagi antenna for the upcoming 5G cellular communications," Applied Sciences, Vol. 9, 1-14, 2019.

32. Abdulkhaleq, A. M., N. O. Parchin, et al. "Mutual coupling effect on three-way doherty amplifier for green compact mobile communications," EuCAP 2020, Copenhagen, Denmark, 2020.

33. Ojaroudi, N., et al., "An omni-directional PIFA for downlink and uplink satellite applications in C-band," Microw. Opt. Technol. Lett., Vol. 56, 2684-2686, 2014.
doi:10.1002/mop.28672

34. Siahkal-Mahalle, B. H., et al., "A new design of small square monopole antenna with enhanced bandwidth by using cross-shaped slot and conductor-backed plane," Microwave Opt. Technol. Lett., Vol. 54, 2656-2659, 2012.
doi:10.1002/mop.27138

35. Statement: Improving consumer access to mobile services at 3.6 GHz to 3.8 GHz, Available online: https://www.ofcom.org.uk/consultations-and-statements/category-1/future-use-at-3.6-3.8-ghz, accessed on Oct. 21, 2018.

36. CST Microwave Studio, ver. 2017, CST, Framingham, MA, USA, 2017.

37. Kumar, A. and S. Raghavan, "Broadband SIW cavity-backed triangular-ringslotted antenna for Ku-band applications," AEU --- International Journal of Electronics and Communications, Vol. 87, 60-64, 2018.
doi:10.1016/j.aeue.2018.02.016

38. Ojaroudi, Y., et al., "Circularly polarized microstrip slot antenna with a pair of spur-shaped slits for WLAN applications," Microw. Opt. Technol. Lett., Vol. 57, 756-759, 2015.
doi:10.1002/mop.28946

39. Kumar, A. and S. Raghavan, "Bandwidth enhancement of substrate integrated waveguide cavity-backed bow-tie-complementary-ring-slot antenna using a shorted-via," Defence Science Journal, Vol. 68, 197-202, 2018.
doi:10.14429/dsj.68.11827

40. Ojaroudi, N., et al., "Enhanced bandwidth of small square monopole antenna by using inverted Ushaped slot and conductor-backed plane," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 27, No. 8, 685-690, Aug. 2012.

41. Al-Nuaimi, M. K. T. and W. G. Whittow, "Performance investigation of a dual element IFA array at 3 GHz for mimo terminals," Antennas and Propagation Conference (LAPC), 1-5, Loughborough, UK, 2011.

42. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Small-size tapered slot antenna (TSA) design for use in 5G phased array applications," Applied Computational Electromagnetics Society Journal, Vol. 32, 193-202, 2018.

43. Ojaroudi, N., "Design of microstrip antenna for 2.4/5.8 GHz RFID applications," German Microwave Conference, GeMic 2014, RWTH Aachen University, Germany, Mar. 10–12, 2014.

44. Mazloum, J., et al., "Compact triple-band S-shaped monopole diversity antenna for MIMO applications," Applied Computational Electromagnetics Society Journal, Vol. 30, 975-980, 2015.

45. Ojaroudi, N. and N. Ghadimi, "Design of CPW-fed slot antenna for MIMO system applications," Microw. Opt. Technol. Lett., Vol. 56, 1278-1281, 2014.
doi:10.1002/mop.28346

46. Valizade, A., et al., "Band-notch slot antenna with enhanced bandwidth by using Ω-shaped strips protruded inside rectangular slots for UWB applications," Appl. Comput. Electromagn. Soc. (ACES) J., Vol. 27, 816-822, 2012.

47. Ojaroudi, N., et al., "Compact ultra-wideband monopole antenna with enhanced bandwidth and dual band-stop properties," International Journal of RF and Microwave Computer-Aided Engineering, 346-357, 2014.

48. Khan, R., A. A. Al-Hadi, and P. J. Soh, "Recent advancements in user effect mitigation for mobile terminal antennas: A review," IEEE Trans. Electromagn. Compat., Vol. 61, No. 1, 279-287, Feb. 2019.
doi:10.1109/TEMC.2018.2791418

49. Khan, R., et al., "User influence on mobile terminal antennas: A review of challenges and potential solution for 5G antennas," IEEE Access, Vol. 6, 77695-77715, 2018.
doi:10.1109/ACCESS.2018.2883788

50. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas Propag. Mag., Vol. 55, 218-232, 2013.
doi:10.1109/MAP.2013.6735522

51. Ojaroudiparchin, N., M. Shen, and G. F. Pedersen, "Design of Vivaldi antenna array with end-fire beam steering function for 5G mobile terminals," 23rd Telecommunications Forum Telfor (TELFOR), 587-590, Belgrade, Serbia, Nov. 24–26, 2015.

52. Parchin, N. O., et al., "Multi-band MIMO antenna design with user-impact investigation for 4G and 5G mobile terminals," Sensors, Vol. 19, 456, 2019.
doi:10.3390/s19030456

53. Syrytsin, I., S. Zhang, and G. F. Pedersen, "Performance investigation of a mobile terminal phased array with user effects at 3.5 GHz for LTE advanced," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1847-1850, 2017.
doi:10.1109/LAWP.2016.2570418

54. Ojaroudiparchin, N., et al., "A switchable 3-D-coverage-phased array antenna package for 5G mobile terminals," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1747-1750, 2016.
doi:10.1109/LAWP.2016.2532607

55. Isa, C. M. N. C., A. A. Al-Hadi, S. N. Azemi, A. M. Ezanuddin, H. Lago, and M. F. Jamlos, "Effects of hand on the performance of 5GHz two port terminal antennas," Proc. IEEE Asia–Pacific Conf. Appl. Electromagn. (APACE), 207-210, Dec. 2016.