Vol. 91
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-14
On the EM Field Generated in the Air-Space by a Vertical Magnetic Dipole Situated on a Plane Conducting Medium
By
Progress In Electromagnetics Research M, Vol. 91, 135-142, 2020
Abstract
This work presents a hybrid analytical-numerical approach to evaluate the integral representations for the time-harmonic electromagnetic (EM) field components produced in the air space by a vertical magnetic dipole (VMD) placed on a plane homogeneous conducting medium. Explicit expressions for the fields are derived by substituting a rational approximation, generated by the vector fitting algorithm, for the non-analytic part of the integrand of the electric vector potential. This permits to rewrite the representation for the electric vector potential as a combination of simple closed-contour integrals around the pole singularities of the rational approximation, which may be directly evaluated. As a result, each field component is given as a sum of cylindrical Hankel functions depending on the radial distance between source and field points, plus an exponential term that is a function of the total distance of the field point from the dipole.
Citation
Marcello Salis, and Marco Muzi, "On the EM Field Generated in the Air-Space by a Vertical Magnetic Dipole Situated on a Plane Conducting Medium," Progress In Electromagnetics Research M, Vol. 91, 135-142, 2020.
doi:10.2528/PIERM20012005
References

1. Zhdanov, M. S., Geophysical Electromagnetic Theory and Methods, Elsevier, 2009.

2. Parise, M., "An exact series representation for the EM field from a circular loop antenna on a lossy half-space," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 23-26, 2014.
doi:10.1109/LAWP.2013.2296149        Google Scholar

3. Farquharson, C. G., D. W. Oldenburg, and P. S. Routh, "Simultaneous 1D inversion of loop-loop electromagnetic data for magnetic susceptibility and electrical conductivity," Geophysics, Vol. 68, No. 6, 1857-1869, 2003.
doi:10.1190/1.1635038        Google Scholar

4. Parise, M., "Efficient computation of the surface fields of a horizontal magnetic dipole located at the air-ground interface," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 29, 653-664, 2016.
doi:10.1002/jnm.2120        Google Scholar

5. Wait, J. R., "Mutual electromagnetic coupling of loops over a homogeneous ground," Geophysics, Vol. 20, No. 3, 630-637, 1955.
doi:10.1190/1.1438167        Google Scholar

6. Beard, L. P. and J. E. Nyquist, "Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability," Geophysics, Vol. 63, No. 5, 1556-1564, 1998.
doi:10.1190/1.1444452        Google Scholar

7. Spies, B. R. and F. C. Frischknecht, "Electromagnetic sounding," Electromagnetic Methods in Applied Geophysics, Volume 2, 285-426, M. N. Nabighian, Ed., SEG, Tulsa, Oklahoma, 1988.        Google Scholar

8. Parise, M., "Exact EM field excited by a short horizontal wire antenna lying on a conducting soil," AEU — International Journal of Electronics and Communications, Vol. 70, No. 5, 676-680, 2016.
doi:10.1016/j.aeue.2016.02.004        Google Scholar

9. Telford, W. M., L. P. Geldart, and R. E. Sheriff, Applied Geophysics, Cambridge University Press, 1990.
doi:10.1017/CBO9781139167932

10. Palacky, G. J., "Resistivity characteristics of geologic targets," Electromagnetic Methods in Applied Geophysics, Vol. 1, 52-129, Nabighian, M. N., Ed., SEG, Tulsa, Oklahoma, 1988.        Google Scholar

11. Parise, M., "Full-wave analytical explicit expressions for the surface fields of an electrically large horizontal circular loop antenna placed on a layered ground," IET Microwaves, Antennas & Propagation, Vol. 11, 929-934, 2017.
doi:10.1049/iet-map.2016.0590        Google Scholar

12. Parise, M., "On the surface fields of a small circular loop antenna placed on plane stratified earth," International Journal of Antennas and Propagation, Vol. 2015, 1-8, 2015.
doi:10.1155/2015/187806        Google Scholar

13. Singh, N. P. and T. Mogi, "Electromagnetic response of a large circular loop source on a layered earth: A new computation method," Pure and Applied Geophysics, Vol. 162, 181-200, 2005.
doi:10.1007/s00024-004-2586-2        Google Scholar

14. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

15. Parise, M. and G. Antonini, "On the inductive coupling between two parallel thin-wire circular loop antennas," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, 1865-1872, 2018.
doi:10.1109/TEMC.2018.2790265        Google Scholar

16. Wait, J. R., "Fields of a horizontal loop antenna over a layered half-space," Journal of Electromagnetic Waves and Applications, Vol. 9, 1301-1311, 1995.        Google Scholar

17. Parise, M., "A study on energetic efficiency of coil antennas used for RF diathermy," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 385-388, 2011.
doi:10.1109/LAWP.2011.2148190        Google Scholar

18. Singh, N. P. and T. Mogi, "EMLCLLER-A program for computing the EM response of a large loop source over a layered earth model," Computer and Geosciences, Vol. 29, No. 10, 1301-1307, 2003.
doi:10.1016/j.cageo.2003.08.008        Google Scholar

19. Parise, M., V. Tamburrelli, and G. Antonini, "Mutual impedance of thin-wire circular loops in near-surface applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, 558-563, 2019.
doi:10.1109/TEMC.2018.2816030        Google Scholar

20. Shastri, N. L. and H. P. Patra, "Multifrequency sounding results of laboratory simulated homogeneous and two-layer earth models," IEEE Trans. Geosci. Remote Sensing, Vol. 26, No. 6, 749-752, 1988.
doi:10.1109/36.7706        Google Scholar

21. Parise, M., "Fast computation of the forward solution in controlled-source electromagnetic sounding problems," Progress In Electromagnetics Research, Vol. 111, 119-139, 2011.
doi:10.2528/PIER10101409        Google Scholar

22. Kong, J. A., L. Tsang, and G. Simmons, "Geophysical subsurface probing with radio-frequency interferometry," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 4, 616-620, 1974.
doi:10.1109/TAP.1974.1140858        Google Scholar

23. Singh, N. P. and T. Mogi, "Inversion of large loop transient electromagnetic data over layered earth models," Jour. Fac. Sci Hokkaido Univ. Ser. VII, Vol. 12, No. 1, 41-54, 2003.        Google Scholar

24. Parise, M., "On the use of cloverleaf coils to induce therapeutic heating in tissues," Journal of Electromagnetic Waves and Applications, Vol. 25, 1667-1677, 2011.
doi:10.1163/156939311797164945        Google Scholar

25. Parise, M., "Improved Babylonian square root algorithm-based analytical expressions for the surface-to-surface solution to the Sommerfeld half-space problem," IEEE Transactions on Antennas and Propagation, Vol. 63, 5832, 2015.
doi:10.1109/TAP.2015.2478958        Google Scholar

26. Simons, N. R. S., A. Sebak, and G. E. Bridges, "Application of the TLM method to half-space and remote-sensing problems," IEEE Trans. Geosci. Remote Sensing, Vol. 33, No. 3, 759-767, 1995.
doi:10.1109/36.387591        Google Scholar

27. Singh, D., N. K. Choudhary, K. C. Tiwari, and R. Prasad, "Shape recognition of shallow buried metallic objects at x-band using ann and image analysis techniques," Progress In Electromagnetics Research B, Vol. 13, 257-273, 2009.
doi:10.2528/PIERB09010301        Google Scholar

28. Parise, M., "Quasi-static vertical magnetic field of a large horizontal circular loop located at the earth’s surface," Progress In Electromagnetics Research Letters, Vol. 62, 29-34, 2016.
doi:10.2528/PIERL16053003        Google Scholar

29. Ward, S. H. and G. W. Hohmann, "Electromagnetic theory for geophysical applications," Electromagnetic Methods in Applied Geophysics, Theory — Volume 1, 131-308, M. N. Nabighian (ed.), SEG, Tulsa, Oklahoma, 1988.        Google Scholar

30. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, 1986.

31. Parise, M., "Second-order formulation for the quasi-static field from a vertical electric dipole on a lossy half-space," Progress In Electromagnetics Research, Vol. 136, 509-521, 2013.
doi:10.2528/PIER12112508        Google Scholar

32. Parise, M., "A highly accurate analytical solution for the surface fields of a short vertical wire antenna lying on a multilayer ground," Waves in Random and Complex Media, Vol. 28, 49-59, 2018.
doi:10.1080/17455030.2017.1319990        Google Scholar

33. Parise, M., "An exact series representation for the EM field from a vertical electric dipole on an imperfectly conducting half-space," Journal of Electromagnetic Waves and Applications, Vol. 28, 932-942, 2014.
doi:10.1080/09205071.2014.897653        Google Scholar

34. Gustavsen, B. and A. Semlyen, "Rational approximation of frequency domain responses by vector fitting," IEEE Trans. Power Delivery, Vol. 14, No. 3, 1052-1061, 1999.
doi:10.1109/61.772353        Google Scholar