1. Jamali, N. H., K. A. Hong Ping, S. Sahrani, and T. Takenaka, "Image reconstruction based on combination of inverse scattering technique and total variation regularization method," Indonesian J. Electrical Engineering and Computer Science, Vol. 5, 569-576, 2017.
doi:10.11591/ijeecs.v5.i3.pp569-576 Google Scholar
2. Kwon, S. and S. Lee, "Recent advances in microwave imaging for breast cancer detection," Int. J. Biomed. Imaging, Vol. 206, 1-26, 2016.
doi:10.1155/2016/5054912 Google Scholar
3. American Cancer Society, Cancer Facts & Figures 2019, , https://www.cancer.org/cancer/breastcancer/about/how common-is-breast cancer.html, accessed Mar. 2019.
4. Fear, E. C., "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Engineering, Vol. 49, 812-822, 2002.
doi:10.1109/TBME.2002.800759 Google Scholar
5. Guo, R., G. Lu, and B. Fei, "Ultrasound imaging technologies for breast cancer detection and management — A review," Ultrasound Med. Biol., Vol. 44, 37-70, 2018.
doi:10.1016/j.ultrasmedbio.2017.09.012 Google Scholar
6. Bowles, D., et al., "The use of ultrasound in breast cancer screening of asymptomatic women with dense breast tissue: A narrative review," Journal of Medical Imaging and Radiation Sciences, Vol. 47, 21-28, 2016.
doi:10.1016/j.jmir.2016.06.005 Google Scholar
7. Vitual Medical Centre, PET Scan (Positron Emission Tomography), , https://www.myvmc.com/investigations/pet-scan-positron-emission-tomography.html, accessed Nov. 2019.
8. Schueren, M. V., Safety assessment of microwave radar breast imaging in the 0.434–9 GHz range, Master Thesis, Department of Electrical & Computer Engineering, McGill University Montreal, Quebec, Canada, Jun. 2011.
9. Rezaeieh, S. A., Wideband microwave imaging systems for the diagnosis of fluid accumulation in the human torso, Ph.D. Thesis, University of Queensland, Australia, 2016.
10. Cleveland, R. F. and J. L. Ulcek, "Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fields," OET Bull., Vol. 56, 1-36, 1999. Google Scholar
11. ICNIRP Guidelines, , Guidelines for limiting exposure to time-varying electric, 6 magnetic and electromagnetic fields, 2018.
12. Larsen, L. E. and J. H. Jacobi, Medical Application of Microwave Imaging, 229, IEEE Press, 1986.
13. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, R. M. Di Florio-Alexander, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Trans. Medical Imaging, Vol. 31, 1584-1592, 2012.
doi:10.1109/TMI.2012.2197218 Google Scholar
14. Elahi, M. A., B. R. Lavoie, E. Porter, M. Glavin, E. Jones, and E. C. Fear, "Comparison of radar-based microwave imaging algorithms applied to experimental breast phantoms," Proc. URSI General Assembly and Scientific Symposium (GASS), Montreal, Canada, Aug. 2017. Google Scholar
15. Semenov, S. Y. and D. R. Corfield, "Microwave tomography for brain imaging: Feasibility assessment for stroke detection," Int. J. Antennas Propag., 1-8, 2008.
doi:10.1155/2008/254830 Google Scholar
16. Scapaticci, R., L. Di Donato, I. Catapano, and L. A. Crocco, "Feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.
doi:10.2528/PIERB12022006 Google Scholar
17. Dogu, S., I. Dilman, M. C. Joren, and I. Akduman, "Imaging of pulmonary edema with microwaves-preliminary investigation," Proc. International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2017. Google Scholar
18. Ghavami, N., G. Tiberi, M. Ghavami, and M. Lane, "Huygens principle based UWB microwave imaging method for skin cancer detection," Proc. International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 2016. Google Scholar
19. Mobashsher, A. T. and A. Abbosh, "Microwave imaging system to provide portable-low powered medical facility for the detection of intracranial hemorrhage," Proc. Australian Microwave Symposium (AMS), Melbourne, Australia, 2014. Google Scholar
20. Meaney, P. M., D. Goodwin, A. H. Golnabi, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE Trans. Biomed. Engineering, Vol. 59, 3304-3313, 2012.
doi:10.1109/TBME.2012.2209202 Google Scholar
21. Muqatash, S. A., M. Khamechi, and A. Sabouni, "Detection of the cervical spondylotic myelopathy using noninvasive microwave imaging technique," IEEE Int. Symp. Ant. Propag. and USNC/URSI National Radio Science Meeting, San Diego, USA, 2017. Google Scholar
22. Colton, D. and P. Monk, "The detection and monitoring of leukemia using electromagnetic waves: Numerical analysis," Inverse Problems — IOPScience, Vol. 11, 329-341, 1995.
doi:10.1088/0266-5611/11/2/003 Google Scholar
23. Lin, J. C. and M. J. Clarke, "Microwave imaging of cerebral edema," Proc. IEEE, Vol. 70, 523-524, 1982.
doi:10.1109/PROC.1982.12341 Google Scholar
24. Zamani, A., S. A. Rezaeieh, and A. M. Abbosh, "Lung cancer detection using frequency domain microwave imaging," Electronics Lett., Vol. 51, 740-741, 2015.
doi:10.1049/el.2015.0230 Google Scholar
25. Brovoll, S., et al., "Time-lapse imaging of human heartbeats using UWB radar," Proc. Biomedical Circuits and Systems (BIOCAS), Rotterdam, Netherlands, 2013. Google Scholar
26. Salvador, S. M., S. M. Fear, E. C. Okoniewski, M. Matyas, and R. John, "Exploring joint tissues with microwave imaging," IEEE Trans. on Microwave Theory and Tech., Vol. 58, 2307-2313, 2010.
doi:10.1109/TMTT.2010.2052662 Google Scholar
27. Alirotehand, M. S. and A. Arbabian, "Microwave-induced thermo-acoustic imaging of subcutaneous vasculature with near-field RF excitation," IEEE Trans. on Microwave Theory and Tech., Vol. 66, 577-588, 2018.
doi:10.1109/TMTT.2017.2714664 Google Scholar
28. Bolomey, J. C., "Crossed viewpoints on microwave-based imaging for medical diagnosis: From genesis to earliest clinical outcomes," The World of Applied Electromag., 369-414, Springer International Publishing, Switzerland, 2018. Google Scholar
29. Modiri, A., S. Goudreau, and K. Kiasaleh, "Review of breast screening: Toward clinical realization of microwave imaging," Med. Phys., Vol. 44, 446-458, Dec. 2017.
doi:10.1002/mp.12611 Google Scholar
30. O’Loughlin, D., M. O’Halloran, B. M. Moloney, M. Glavin, and E. Jones, "Microwave breast imaging: Clinical advances and remaining challenges," IEEE Trans. Biomed. Engineering, Vol. 65, 1-14, 2018.
doi:10.1109/TBME.2017.2779245 Google Scholar
31. Micrima-Maria Update, , Micrima enters into distribution agreement with Hologic for its novel breast imaging system MARIA June 2019, https://micrima.com/micrima-newsletters/vol6, accessed Jan. 2020.
32. Farugia, L., P. S. Wismayer, L. Z. Mangion, and C. V. Sammut, "Accurate in vivo dielectric properties of liver from 500 MHz to 40 GHz and their correlation to ex vivo measurements," Electromagnetic Biology and Medicine, 1-9, 2016. Google Scholar
33. Salahuddin, S., A. L. Gioia, M. A. Elahi, E. Porter, M. O’Halloran, and A. Shahzad, "Comparison of in-vivo and ex-vivo dielectric properties of biological tissues," Proc. ICEAA, 582-585, Verona, Italy, 2017. Google Scholar
34. Amin, B., M. A. Elahi, A. Shahzad, E. Porter, B. McDermott, and M. O’Halloran, "Dielectric properties of bones for the monitoring of osteoporosis," Medical & Biological Engineering & Computing, Vol. 57, 1-13, 2019.
doi:10.1007/s11517-018-1887-z Google Scholar
35. Ridley, N., A. Iriarte, and L. Tsui, "Automatic labeling of lesions using radio frequency feature discrimination," Proc. European Congress of Radiology Annual Meeting, Vienna, Austria, 2017. Google Scholar
36. Chaudhary, S. S., R. K. Mishra, A. Swarupand, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian Journal of Biochemistry and Biophysics, Vol. 21, 76-79, 1984. Google Scholar
37. Joines, W. T., Y. Zhang, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, 1994.
doi:10.1118/1.597312 Google Scholar
38. Campbel, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 3, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014 Google Scholar
39. Hurt, W. D., J. M. Ziriax, and P. A. Mason, "Variability in EMF permittivity values: Implications for SAR calculations," IEEE Trans. Biomed. Engineering, Vol. 47, 396-401, 2000.
doi:10.1109/10.827308 Google Scholar
40. Lazebnik, M., L. McCartney, and D. Popovic, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 26-37, 2007. Google Scholar
41. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
42. Poplack, S. P., et al., "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, 350-359, 2007.
doi:10.1148/radiol.2432060286 Google Scholar
43. Halter, R. J., et al., "The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: Initial clinical experience," Institute of Physics and Engineering in Medicine, Vol. 30, 121-136, 2009. Google Scholar
44. Chung, S. H., A. E. Cerussi, and A. Klifa, "In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol., Vol. 53, 6713-6727, 2008.
doi:10.1088/0031-9155/53/23/005 Google Scholar
45. Shahzad, A., S. Khan, and M. Jones, "Investigation of the effect of dehydration on tissue dielectric properties in ex vivo measurements," Biomedical Physics and Engineering Express, Vol. 3, 1-9, 2017. Google Scholar
46. Meaney, P. M., A. P. Gregory, and N. R. Epstein, "Microwave open-ended coaxial dielectric probe: Interpretation of the sensing volume re-visited," BMC Medical Physics, Vol. 14, 1-11, 2014. Google Scholar
47. Meaney, P., T. Rydholm, and H. A. Brisby, "A transmission-based dielectric property probe for clinical applications," Sensors, Vol. 6, 1-16, 2018. Google Scholar
48. Gioia, A. L., S. Salahuddin, M. O’Halloran, and E. Porter, "Quantification of the sensing radius of a coaxial probe for accurate interpretation of heterogeneous tissue dielectric data," IEEE J. Electromag. RF Microw. Medicine & Biol., Vol. 2, 1-9, 2018. Google Scholar
49. Porter, et al., "Minimum information for dielectric measurements of biological tissues (MINDER): A framework for repeatable and reusable data," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, 1-27, 2017. Google Scholar
50. Zubair, K. S., S. A. Alhuwaidi, H. H. Song, Y. G. Shellman, W. A. Robinson, A. J. Applegate, and C. M. Amato, "Investigation of dielectric spectroscopy response in normal and cancerous biological tissues using S-parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 8, 956-971, 2018. Google Scholar
51. Hussein, M., F. Awwad, D. Jithin, E. Hasasna, K. Athamneh, and R. Iratni, "Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz," Scientific Reports, Vol. 9, 1-8, 2019. Google Scholar
52. Gioia, L. A, et al., "Open-ended coaxial probe technique for dielectric measurement of biological tissues: Challenges and common practices," Diagnostics, Vol. 8, 1-38, 2018. Google Scholar
53. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first order diffraction tomography," IEEE Trans. on Microwave Theory and Tech., Vol. 32, 860-874, 1984. Google Scholar
54. Semenov, S. Y., A. E. Boulyshev, and R. H. Svenson, "Three-dimensional microwave tomography experimental prototype of the system and vector Born reconstruction method," IEEE Trans. Biomed. Engineering, Vol. 46, 937-947, 1999. Google Scholar
55. Joisel, A., A. Broquetas, J. M. Griffin, L. Jofre, and J. C. Bolomey, "Microwave imaging techniques for biomedical application," Proc. IEEE Instrum. Measure. Tech. Conference, Venice, Italy, 1999. Google Scholar
56. Meaney, P. M., M. W. Fanning, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. on Microwave Theory and Tech., Vol. 48, 1841-1853, 2000. Google Scholar
57. Son, S. H., N. Simonov, H. J. Kim, J. M. Lee, and S. I. Jeon, "Preclinical prototype development of a microwave tomography system for breast cancer detection," ETRI Journal, Vol. 32, No. 6, 901-910, 2010. Google Scholar
58. Zhurbenko, V., T. Rubaek, V. Krozer, and P. Meincke, "Design and realisation of a microwave three-dimensional imaging system with application to breast-cancer detection," IET Microwaves, Antennas Propag., Vol. 4, 2200-2211, 2010. Google Scholar
59. Gibbins, D., D. Byrne, T. Henriksson, B. Monsalve, and I. J. Craddock, "Less becomes more for microwave imaging — Design and validation of an ultrawide-band measurement array," IEEE Antennas Propag. Mag., Vol. 59, 72-85, 2017. Google Scholar
60. Fedeli, A., et al., "A tomograph prototype for quantitative microwave imaging: Preliminary experimental results," J. Imaging, Vol. 4, 1-9, 2018. Google Scholar
61. Zamani, A., S. A. Rezaeieh, K. S. Bialkowski, and A. M. Abbosh, "Boundary estimation of imaged object in microwave medical imaging using antenna resonant frequency shift," IEEE Trans. Antennas and Propag., Vol. 66, 927-936, 2018. Google Scholar
62. Rezaeieh, S. A., A. Zamani, K. S. Bialkowski, G. M. Macdonald, and A. M. Abbosh, "Three-dimensional electromagnetic torso scanner," Sensors, Vol. 19, 1-14, 2019. Google Scholar
63. Asefi, M., A. Baran, and J. LoVetri, "An experimental phantom study for air-based quasi-resonant microwave breast imaging," IEEE Trans. on Microwave Theory and Tech., Vol. 67, 3946-3954, 2019. Google Scholar
64. Joachimowitz, N., C. Pichot, and J. P. Hugonin, "Inverse scattering in iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas and Propag., Vol. 39, 1742-1752, 1991. Google Scholar
65. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using distorted Born iterative method," IEEE Trans. Medical Imaging, Vol. 9, 218-225, 1990. Google Scholar
66. Kishk, A. A., R. P. Parrikar, and A. Z. Elsherbeni, "Electromagnetic scattering from an eccentric multilayered circular cylinder," IEEE Trans. Antennas and Propag., Vol. 40, 295-303, 1992. Google Scholar
67. Oliveri, G., N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas and Propag., Vol. 62, 5157-5170, 2014. Google Scholar
68. Ireland, D., K. Bialkowski, and A. M. Abbosh, "Microwave imaging for brain stroke detection using Born iterative method," IET Microw. Antennas Propag., Vol. 7, 909-915, 2013. Google Scholar
69. Burfeindt, M. J., J. D. Shea, and S. C. Hagness, "Beamforming-enhanced inverse scattering for microwave breast imaging," IEEE Trans. Antennas and Propag., Vol. 62, 5126-5132, 2014. Google Scholar
70. Ye, X. and X. Chen, "Subspace-based distorted-Born iterative method for solving inverse scattering problems," IEEE Trans. Antennas and Propag., Vol. 65, 7224-7232, 2017. Google Scholar
71. Neira, L. M., B. D. Van Veen, and S. C. Hagness, "High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint," IEEE Trans. Antennas and Propag., Vol. 65, 6002-6014, 2017. Google Scholar
72. Palmeri, R., M. T. Bevacqua, L. Crocco, T. Isernia, and L. Di Donato, "Microwave imaging via distorted iterated virtual experiments," IEEE Trans. Antennas and Propag., Vol. 65, 1-9, 2016. Google Scholar
73. Meaney, P. M., S. D. Geimer, and K. D. Paulsen, "Two-step inversion with a logarithmic transformation for microwave breastimaging," J. Medical Physics, Vol. 44, 4239-4251, 2017. Google Scholar
74. Tournier, P. H., et al., "Microwave tomography for brain stroke imaging," Proc. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017. Google Scholar
75. Bisio, I., et al., "Brain stroke microwave imaging by means of a Newton-conjugate-gradient method in Lp Banach spaces," IEEE Trans. on Microwave Theory and Tech., Vol. 66, 3668-3682, 2018. Google Scholar
76. Autieri, R., G. Ferraiuolo, and V. Pascazio, "Bayesian regularization in nonlinear imaging: Reconstructions from experimental data in non-linearized microwave tomography," IEEE Trans. Geosci. Remote Sens., Vol. 49, 801-813, 2011. Google Scholar
77. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Prob., Vol. 25, 1-41, 2009. Google Scholar
78. Robinson, J. and Y. R. Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas and Propag., Vol. 52, 397-407, 2004. Google Scholar
79. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011. Google Scholar
80. Salucci, M., L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sens., Vol. 55, 1305-1317, 2017. Google Scholar
81. Poli, L., G. Oliveri, and A. Massa, "Microwave imaging within the first-order Born approximation by means of contrast-field Bayesian compressive sensing," IEEE Trans. Antennas and Propag., Vol. 60, 2865-2879, 2012. Google Scholar
82. Poli, L., G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations," IEEE Trans. Geosci. Remote Sens., Vol. 51, 2920-2935, 2013. Google Scholar
83. Majobi, P. and J. LeVetri, "Comparison of TE and TM inversions in the framework of the Gauss-Newton method," IEEE Trans. Antennas and Propag., Vol. 64, 1336-1348, 2010. Google Scholar
84. Shah, P. and U. K. Khankohoje, "Inverse scattering using a joint L1-L2 norm-based regularization," IEEE Trans. Antennas and Propag., Vol. 64, 1373-1384, 2017. Google Scholar
85. Oliveri, G., M. Salucci, N. Anselmi, and A. Massa, "Compressive sensing as applied to inverse problems for imaging: Theory, applications, current trends, and open challenges," IEEE Antennas Propag. Magazine, Vol. 17, 34-46, 2017. Google Scholar
86. Candes, E. and J. Romberg, l1-magic: Recovery of sparse signals via convex programming 2005, http: www.acm.caltech.edu/l1magic/l1magicnotes.pdf., accessed Jan. 2019.
87. Yalcin, E. and O. Ozdemir, "Sparsity based regularization for microwave imaging with NESTA algorithm," Proc. IEEE Conference on Antennas Measurements and Applications (CAMA), Tsukuba, Japan, 2017. Google Scholar
88. Ambrosanio, M., P. Kosmas, and V. Pascazio, "A multithreshold iterative DBIM-based algorithm for the imaging of heterogeneous breast tissues," IEEE Trans. Biomed. Engineering, Vol. 66, 509-520, 2019. Google Scholar
89. Ambrosanio, M., M. Bevacqua, T. Isernia, and V. Pascazio, "The tomographic approach to ground-penetrating radar for underground exploration and monitoring," IEEE Signal Processing Magazine, Vol. 36, No. 4, 62-73, 2019. Google Scholar
90. Kosmas, P., et al., "Design and experimental validation of a multiple-frequency microwave tomography system employing the DBIM-TwIST algorithm," Sensors, Vol. 18, 1-13, 2018. Google Scholar
91. Kosmas, P., et al., "Experimental validation of microwave tomography with the DBIM-TwIST algorithm for brain stroke detection and classification," Sensors, Vol. 20, 1-16, 2020. Google Scholar
92. Zhou, H. and R. M. Narayan, "Microwave imaging of nonsparse object using dual-mesh method and iterative method," IEEE Trans. Antennas and Propag., Vol. 67, 504-512, 2019. Google Scholar
93. Rudin, L. I. and S. Osher, "Total variation based image restoration with free local constraints," Proc. International Conf. Image Processing, Austin, USA, 1994. Google Scholar
94. Anselmi, N., G. Oliver, M. A. Hannan, M. Salucci, and A. Massa, "Color compressive sensing imaging of arbitrary-shaped scatterers," IEEE Trans. on Microwave Theory and Tech., Vol. 65, 1986-1999, 2017. Google Scholar
95. Salucci, M., L. Poli, and G. Oliveri, "Full-vectorial 3D microwave imaging of sparse scatterers through a multi-task bayesian compressive sensing approach," J. Imaging, Vol. 5, 1-24, 2019. Google Scholar
96. Zhong, Y. and K. Hu, "Contraction integral equation for three-dimensional electromagnetic inverse scattering problem," J. Imaging, Vol. 25, 1-17, 2019. Google Scholar
97. Leijsen, R., P. Fuchs, W. Brink, A. Webb, and R. Remis, "Developments in electrical-property tomography based on the contrast-source inversion method," J. Imaging, Vol. 25, 1-19, 2019. Google Scholar
98. Estatico, C., A. Fedeli, M. Pastorino, A. Randazzo, and E. Tavanti, "Microwave imaging of 3D dielectric structures by means of a Newton-CG method in Lp spaces," Int. J. Antennas Propag., Vol. 2019, 1-15, 2019. Google Scholar
99. Afsari, A., A. Abbosh, and Y. H. Samii, "A rapid medical microwave tomography based on partial differential equations," IEEE Trans. Antennas and Propag., Vol. 6, 5521-5535, 2018. Google Scholar
100. Ambrosanio, M., P. Kosmas, and V. Pascazio, "Exploiting wavelet decomposition to enhance sparse recovery in microwave imaging," Proc. EUCAP, Paris, France, 2017. Google Scholar
101. Semnani, A., I. T. Rekanos, and M. Moghaddam, "Solving inverse scattering problems based on truncated cosine Fourier and cubic B-spline expansions," IEEE Trans. Antennas and Propag., Vol. 60, 5914-5923, 2012. Google Scholar
102. Ahmadabadi, H. and K. Forooraghi, "Application of Fourier-Jacobi expansion to inverse scattering problem," IEEE Antennas Wireless Propag. Lett., Vol. 16, 956-959, 2017. Google Scholar
103. Athira, A. R., T. A. Anjit, and P. Mythili, "A multi-illumination multi-frequency approach for early detection of breast tumor by mode-matching method," Proc. International Conference on Advances in Computing and Communications (ICACC), Cochin, India, 2015. Google Scholar
104. Islam, M. A., A. Kiourti, and J. L. Volakis, "A novel method to mitigate real-imaginary image imbalance in microwave tomography," IEEE Trans. Biomed. Engineering (Early Access), 2019. Google Scholar
105. Bevacqua, M., et al., "A method for quantitative imaging of electrical properties of human tissues from only amplitude electromagnetic data," Inverse Prob., Vol. 35, 1-18, 2018. Google Scholar
106. Zakaria, A. and J. LoVetri, "The finite-element method contrast source inversion algorithm for 2D transverse electric vectorial problems," IEEE Trans. Antennas and Propag., Vol. 60, 1-21, Oct. 2012. Google Scholar
107. Ostadrahimi, M., A. Zakaria, J. LoVetri, and L. Shafai, "A near-field dual polarized (TE-TM) microwave imaging system," IEEE Trans. on Microwave Theory and Tech., Vol. 61, 1376-1384, 2013. Google Scholar
108. Tzagkarakis, G., Bayesian compressed sensing using Alpha-stable distributions, Ph.D. Thesis, Department of Computer Science, University of Crete, Nov. 2009.
109. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Trans. Antennas and Propag., Vol. 58, 2337-2344, 2010. Google Scholar
110. Bourqui, J., J. Sill, and E. C. Fear, "A prototype system for measuring microwave frequency reflections from the breast," Int. J. Biomed. Imaging, Vol. 2012, 1-12, 2012. Google Scholar
111. Islam, M. T., M. Z. Mahmud, M. Tarikul Islam, S. Kibria, and M. Samsuzzaman, "A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array," Scientific Reports, Vol. 9, 1-13, 2019. Google Scholar
112. Islam, M. T., M. Samsuzzaman, S. Kibria, N. Misran, and M. T. Islam, "Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm," Scientific Reports, Vol. 9, 1-14, 2019. Google Scholar
113. Alqadami, A. S. M., K. S. Bialkowski, A. T. Mobashsher, and A. Abbosh, "Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis," IEEE Trans. Biomed. Circuits Sys., Vol. 13, 124-134, 2019. Google Scholar
114. Manoufali, M., K. S. Bialkowski, N. Mohammed, P. C. Mills, and A. Abbosh, "Compact implantable antennas for the cerebrospinal fluid monitoring,", Vol. 67, No. 8, 4955-4967, 2019. Google Scholar
115. Felicio, J. M., J. M. Bioucas-Dias, J. R. Costa, and C. A. Fernandes, "Microwave breast imaging using dry setup," IEEE Trans. Computational Imag., Vol. 6, 167-180, 2019. Google Scholar
116. Marimuthu, J., K. S. Bialkowski, and A. M. Abbosh, "Software-defined radar for medical imaging," IEEE Trans. on Microwave Theory and Tech., Vol. 4, 643-652, 2016. Google Scholar
117. Stancombe, A. E., K. S. Bialkowski, and A. M. Abbosh, "Portable microwave head imaging system using software-defined radio and switching network," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 3, No. 4, 284-291, 2019. Google Scholar
118. Casu, M. R., M. Vacca, J. A. Tobon, A. Pulimeno, I. Sarwar, R. Solimene, and F. Vipiana, "A COTS-based microwave imaging system for breast-cancer detection," IEEE Trans. Biomed. Circuits Sys., Vol. 11, 804-814, 2017. Google Scholar
119. Porter, E., E. Kirshin, A. Santorelli, M. Coates, and M. Popovic, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas Wireless Propag. Lett., Vol. 12, 229-232, 2013. Google Scholar
120. Wang, F. and T. Arslan, "Breast cancer detection with microwave imaging system using wearable conformal antenna arrays," Proc. International Conf. Innovation Sustainability (IST), Gothenburg, Sweden, 2017. Google Scholar
121. Shao, W., A. Edalati, T. R. McColloug, and W. J. McCollough, "A phase confocal method for near-field microwave imaging," IEEE Trans. on Microwave Theory and Tech., Vol. 65, 2508-2514, 2017. Google Scholar
122. Mukherjee, S., L. Udpa, S. Udpa, E. J. Rothwell, and Y. Deng, "A time reversal-based microwave imaging system for detection of breast tumors," IEEE Trans. on Microwave Theory and Tech., Vol. 67, 2062-2075, 2019. Google Scholar
123. Oloumi, D., R. S. C. Winte, A. Kordzadeh, P. Boulanger, and K. Rambabu, "Microwave imaging of breast tumor using time-domain UWB circular-SAR technique," IEEE Trans. Medical Imaging (Early Access), Vol. 39, No. 4, 934-943, 2019. Google Scholar
124. Kwon, S., H. Lee, and S. Lee, "Image enhancement with Gaussian filtering in time-domain microwave imaging system for breast cancer detection," Electronics Lett., Vol. 52, 342-344, 2016. Google Scholar
125. Seo, Y., K. Sogo, and A. Toya, "CMOS equivalent time sampling of Gaussian monocycle pulse for confocal imaging," 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, Oct. 22–24, 2014. Google Scholar
126. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas Propag. Mag., Vol. 47, 19-34, 2017. Google Scholar
127. Hossain, M. D., A. S. Mohan, and M. J. Abedin, "Beamspace time reversal microwave imaging for breast cancer detection," IEEE Antennas Wireless Propag. Lett., Vol. 12, 241-244, 2013. Google Scholar
128. Li, Y., E. Porter, and M. Coates, "Imaging-based classification algorithms on clinical trial data with injected tumor responses," Proc. EuCAP 2015, 15, Lisbon, Portugal, May 2015. Google Scholar
129. Shahzad, A., M. O’Halloran, E. Jones, and M. Glavin, "A preprocessing filter for multistatic microwave breast imaging for enhanced tumor detection," Progress In Electromagnetics Research B, Vol. 57, 115-126, 2014. Google Scholar
130. Byrne, D. and I. J. Craddock, "Time-domain wideband adaptive beamforming for radar breast imaging," IEEE Trans. Antennas and Propag., Vol. 63, 1725-1735, 2015. Google Scholar
131. O’Loughlin, D., B. L. Oliveira, M. Glavin, E. Jones, and M. O’Halloran, "Advantages and disadvantages of parameter search algorithms for permittivity estimation for microwave breast imaging," Proc. Eucap 2019, Krakow, Poland, 2019. Google Scholar
132. Li, Y., E. Porter, and M. Coates, "Imaging-based classification algorithms on clinical trial data with injected tumour responses," Proc. EuCAP 2015, 1-5, Lisbon, Portugal, 2015. Google Scholar
133. Elahi, M. A., B. R. Lavoie, E. Porter, M. Glavin, E. Jones, E. C. Fear, and M. O’Halloran, "Comparison of radar-based microwave imaging algorithms applied to experimental breast phantoms," Proc. URSI GASS, 1-4, Montreal, Canada, 2017. Google Scholar
134. Elahi, M. A., B. R. Lavoie, E. Porter, M. Glavin, E. Jones, E. C. Fear, and M. O’Halloran, "Evaluation of image reconstruction algorithms for confocal microwave imaging-application to patient data," Sensors, Vol. 18, 1-21, 2018. Google Scholar
135. O’Loughlin, D., B. L. Oliveira, M. Glavin, E. Jones, and M. O’Halloran, "Comparing radar-based breast imaging algorithm performance with realistic patient-specific permittivity estimation," J. Imag., Vol. 5, 1-15, 2019. Google Scholar
136. Leith, E. N. and J. Upatnieks, "Reconstructed wavefronts and communication theory," Journal of the Optical Society of America, Vol. 52, 1123-1130, 1962. Google Scholar
137. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Holographic microwave imaging for medical applications," J. Biomed. Science Engg., Vol. 6, 823-833, 2013. Google Scholar
138. Boriskin, A. and R. Sauleau, Aperture Antennas for Millimeter and Sub-millimeter Wave Applications, 490, Springer, 2017.
139. Amineh, R. K., M. Ravan, J. McCombe, and N. K. Nikolova, "Three-dimensional microwave holographic imaging employing forward-scattered waves only," Intl. J. Antennas Propag., Vol. 2013, 1-16, 2013. Google Scholar
140. Amineh, R. K., J. McCombe, A. Khalatpour, and N. K. Nikolova, "Microwave holography using point-spread functions measured with calibration objects," IEEE Trans. Instrum. Meas., Vol. 64, 403-417, 2015. Google Scholar
141. Amineh, R. K., M. Ravan, R. Sharma, and S. Baua, "Three-dimensional holographic imaging using single frequency microwave data," Intl. J. Antennas Propag., Vol. 2018, 1-15, 2018. Google Scholar
142. Wang, L. and M. Fatemi, "Compressive sensing holographic microwave random array imaging of dielectric inclusion," IEEE Access, Vol. 6, 56477-56487, 2018. Google Scholar
143. Biabani, S. A. A., E. Shafie, and M. O. Khozium, "Indirect Holography Breast Cancer Detection System (IH-BCDS) using VORD," European Scientific Journal, Vol. 13, 10-21, 2017. Google Scholar
144. Elsdon, M., O. Yurduseven, and D. Smith, "Early stage breast cancer detection using indirect microwave holography," Progress In Electromagnetics Research, Vol. 143, 405-419, 2013. Google Scholar
145. Smith, D., O. Yurduseven, B. Livingstone, and V. Schejbal, "Microwave imaging using indirect holographic techniques," IEEE Antennas Propag. Mag., Vol. 56, 104-117, 2014. Google Scholar
146. Tajik, D., Advances in quantitative microwave holography, Ph.D. Thesis, Department of Electrical & Computer Engineering, McMaster University, Canada, 2017.
147. Fear, E. C., "Microwave imaging of the breast," Technology in Cancer Research & Treatment, Vol. 4, 69-89, 2005. Google Scholar
148. Kruger, R. A., K. K. Kopecky, A. M. Aisen, P. R. Reinecke, G. A. Kurger, and W. L. Kiser, "Thermoacoustic CT with radio waves: A medical imaging paradigm," Radiology, Vol. 211, 275-278, 1999. Google Scholar
149. Kruger, R. A., W. L. Kiser, P. R. Reinecke, and G. A. Kurger, "Thermoacoustic computed tomography using a conventional linear transducer array," Intl. J. Med. Phy. Research & Practice, Vol. 30, 856-860, 2003. Google Scholar
150. Zanger, G., O. Scherzer, and M. Haltmeier, "Circular integrating detectors in photo and thermoacoustic tomography," Inverse Prob. Sci. Engg., Vol. 17, 133-142, 2009. Google Scholar
151. Xu, M., Y. Xu, and L. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Engineering, Vol. 50, 1086-1099, 2003. Google Scholar
152. Ye, F., Z. Ji, W. Ding, C. Lou, S. Yang, and D. Xing, "Ultrashort microwave-pumped real-time thermoacoustic breast tumor imaging system," IEEE Trans. Medical Imaging, Vol. 35, 839-844, 2016. Google Scholar
153. Xu, X. and L. V. Wang, "Signal processing in scanning thermo-acoustic tomography in biological tissue," Med. Phys., Vol. 28, 1519-1524, 2008. Google Scholar
154. Abbosh, Y. M., "Breast cancer diagnosis using microwave and hybrid imaging methods," International Journal of Computer Science & Engineering Survey, Vol. 5, 41-48, 2014. Google Scholar
155. Golnabi, A. H., P. M. Meaney, and K. D. Paulsen, "3D microwave tomography of the breast using prior anatomical information," Med. Phys., Vol. 43, 1933-1944, 2016. Google Scholar
156. Golnabi, A. H., P. M. Meaney, S. D. Geimer, and K. D. Paulsen, "3-D microwave tomography using the soft prior regularization technique: Evaluation in anatomically-realistic MRI-derived numerical breast phantoms," IEEE Trans. Biomed. Engineering, Vol. 66, No. 9, 2566-2575, 2019. Google Scholar
157. Dagheyan, A. G., A. Molaei, R. Obermeier, A. K. Martinez, and J. M. Lorenzo, "Near-field radar microwave imaging as an add-on modality to mammography," New Perspectives in Breast Imaging, 15-43, Intech-Open Publishing, London, UK, 2017. Google Scholar
158. Jiang, H., et al., "Ultrasound-guided microwave imaging of breast cancer: Tissue phantom and pilot clinical experiments," Med. Phys., Vol. 32, 2528-2535, 2005. Google Scholar
159. Massey, H., N. Ridley, and I. Lyburn, "Radiowave detection of breast cancer in the symptomatic clinic — A multi-centre study," Proc. International Cambridge Conf. on Breast Imaging, Cambridge, UK, Jul. 2017. Google Scholar
160. Ridley, N., M. Shere, and I. Lyburn, "Cancer detection in dense tissue using radiofrequency imaging-a clinical evaluation," Proc. European Congress of Radiology Annual Meeting, 1-9, Vienna, Austria, Mar. 2017. Google Scholar
161. Grzegorczyk, T. M., P. M. Meaney, and K. D. Paulsen, "Microwave tomographic imaging for breast cancer chemotherapy monitoring," Proc. EuCAP 2014, 702-703, Hague, Netherlands, 2014. Google Scholar
162. Meaney, P. M. and K. D. Paulsen, "Addressing multipath signal corruption in microwave tomography and the influence on system design and algorithm," J. Biomed. Eng. Biosci., Vol. 1, 1-13, 2018. Google Scholar
163. Meaney, P. M., et al., System and method using precious-metal nanoparticle contrast agent for microwave medical imaging, Patent No. US 9, 786, 048 B2, 2017.
164. Hosseinzadegan, S., A. Fhager, M. Persson, and P. M. Meaney, "A discrete dipole approximation solver based on the COCG-FFT algorithm and its application to microwave breast imaging," International Journal of Antennas and Propagation, Vol. 2019, 1-13, 2019. Google Scholar
165. Meaney, P. M., et al., "A 4-channel, vector network analyzer microwave imaging prototype based on software defined radio technology," Rev. Sci. Instrum., Vol. 90, 1-14, 2019. Google Scholar
166. Fasoula, A., L. Duchesne, J. G. D. Cano, P. Lawrence, G. Robin, and J. G. Bernard, "On-site validation of a microwave breast imaging system, before first patient study," Diagnostics, Vol. 8, 1-38, 2018. Google Scholar
167. Fasoula, A., et al., "Microwave vision: From RF safety to medical imaging," Proc. Eucap 2017, 1-5, Paris, France, 2017. Google Scholar
168. Duchesne, L., A. Fasoula, E. Kaverine, G. Robin, and G. J. Bernard, "Wavelia microwave breast imaging: Identification and mitigation of possible sources of measurement uncertainty," Eucap 2019, 1-6, Krakow, Poland, 2019. Google Scholar
169. ICH GCP Clinical Trials Registry, , Pilot clinical evaluation of a microwave imaging system for early breast cancer detection pilot clinical study on a low-power electromagnetic wave breast imaging device for cancer screening purposes, https://clinicaltrials.gov/ct2/show/NCT03475992, accessed Jul. 2019.
170. Jeon, S., B. R. Kim, and S. H. Son, "Clinical trial of microwave tomography imaging," Proc. URSI, 1-2, Seoul, Korea, Aug. 2016. Google Scholar
171. Simonov, N., S. Jeon, B. R. Kim, K. J. Lee, and S. H. Son, "Advanced fast 3D electromagnetic solver for microwave tomography imaging," IEEE Trans. Med. Imag., Vol. 36, 2160-2170, 2017. Google Scholar
172. Simonov, N., S. Jeon, B. R. Kim, and S. H. Son, "Analysis of the super-resolution effect on microwave tomography," Special Issue — 2016 URSI Asia-Pacific Radio Science Conference, 2019. Google Scholar
173. Porter, E., M. Coates, and M. Popovic, "An early clinical study of time-domain microwave radar for breast health monitoring," IEEE Trans. Biomed. Engineering, Vol. 63, 530-539, 2016. Google Scholar
174. Li, Y., E. Porter, A. Santorelli, M. Popovic, and M. Coates, "Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation," Biomedical Signal Processing and Control, Vol. 31, 366-376, 2017. Google Scholar
175. Kranold, L., C. Quintyne, M. Coates, and M. Popovic, "Clinical study with a time-domain microwave breast monitor: Analysis of the system response and patient attributes," Proc. Eucap 2013, Krakow, Poland, 2019. Google Scholar
176. Yang, F., et al., "A large-scale clinical trial of radar-based microwave breast imaging for Asian women: Phase I," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 781-783, San Diego, USA, 2017. Google Scholar
177. Bourqui, J. and E. C. Fear, "Systems for ultra-wideband microwave sensing and imaging of biological tissues," Proc. EuCAP 2013, 834-835, Gothenburg, Sweden, 2013. Google Scholar
178. Bourqui, J. and E. C. Fear, "Average breast permittivity measurements: Preliminary results from patient study," Proc. EuCAP, 1-4, Davos, Switzerland, 2016. Google Scholar
179. Ono, Y. and Kuwahara, "An analysis of microwave imaging using a combination of multi-static radar imaging and inverse scattering tomography methods," IEEE Int. Symposium on Antennas & Prop. and USNC/URSI National Radio Science Meeting, 2385-2386, San Diego, USA, 2017. Google Scholar
180. Song, H., et al., "Detectability of breast tumor by a hand-held impulse-radar detector: Performance evaluation and pilot clinical study," Scientific Reports, Vol. 7, 1-11, 2017. Google Scholar
181. Sasada, S., et al., "Portable impulse-radar detector for breast cancer: A pilot study," Journal of Medical Imaging, Vol. 5, 1-5, 2018. Google Scholar
182. Song, H., et al., "Microwave imaging using CMOS integrated circuits with rotating 4×4 antenna array on a breast phantom," International Journal of Antennas and Propagation, Vol. 2017, 1-14, 2017. Google Scholar
183. Azhari, A., Y. Kuwano, X. Xiao, and T. Kikkawa, "Transmit/receive 320 GHz 1.2 mW packaged double-pole-16-throw switching matrix for radar-based target detection," Japanese Journal of Applied Physics, Vol. 57, 1-10, 2017. Google Scholar
184. Azhari, A. and T. Kikkawa, "A 2 to 12GHz 65 nm transmit/receive CMOS DP8T switching matrix for ultra-wideband antenna arrays," Int. J. Circ. Theor. Appl., Vol. 1–9, 2019. Google Scholar
185. Masui, Y., et al., "Gaussian monocycle pulse generator with calibration circuit for breast cancer detection," Proc. BioCAS, 1-4, Cleveland, OH, USA, 2018. Google Scholar
186. Sani, L., et al., "Novel microwave apparatus for breast lesions detection: Preliminary clinical results," Science Direct Biomedical Signal Processing and Control, Vol. 52, 257-263, 2019. Google Scholar
187. Vispa, A., et al., "UWB device for breast microwave imaging: Phantom and clinical validations," Science Direct Measurement, Vol. 146, 582-589, 2019. Google Scholar
188. Kobe University, , The science of looking beneath the surface, https://kobeu.ac.jp/research-atkobe/2019-06-17.html, accessed Jan. 2020.
189. Kimura, et al., Scattering tomography method and scattering tomography device, Patent Num. US 2016/0377557 A1, 2017.
190. Kimura, et al., Scattering tomography method and scattering tomography device, Patent Num. EP 2 957 925 B1, 201.
191. Hamsakutty, V., A. Lonappan, V. Thomas, G. Bindu, J. Jacob, J. Yohannan, and K. T. Mathew, "Coupling medium for microwave medical imaging applications," Electronic Lett., Vol. 39, 1498-1499, 2003. Google Scholar
192. Amineh, R. K., M. Ravan, A. Trehan, and N. K. Nikolova, "Near-field microwave imaging based on aperture raster scanning with TEM horn antennas," IEEE Trans. Antennas and Propag., Vol. 59, 928-940, 2011. Google Scholar
193. Mashal, A., et al., "Toward Carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: Enhanced dielectric and heating response of tissue-mimicking materials," IEEE Trans. Biomed. Engineering, Vol. 8, 1831-1834, 2010. Google Scholar
194. Mashal, A., B. Sitharaman, J. H. Booske, and S. C. Hagness, "Dielectric characterization of carbon nanotube contrast agents for microwave breast cancer detection," Antennas and Propagation Society Int. Symp., 1-4, 2009. Google Scholar
195. Bevacqua, M. T. and R. Scapaticci, "A compressive sensing approach for 3D breast cancer microwave imaging with magnetic nanoparticles as contrast agent," IEEE Trans. Med. Imag., Vol. 35, 665-673, 2016. Google Scholar
196. Samadishadlou, M., et al., "Magnetic carbon nanotubes: Preparation, physical properties, and applications in biomedicine," Artificial Cells, Nanomedicine, and Biotechnology, Vol. 7, 1314-1330, 2017. Google Scholar
197. Scapaticci, R., G. Bellizzi, I. Catapano, L. Crocco, and O. M. Bucci, "An effective procedure for MNP-enhanced breast cancer microwave imaging," IEEE Trans. Biomed. Engineering, Vol. 61, 1071-1079, 2014. Google Scholar
198. Bucci, O. M., G. Bellizzi, A. Borgia, S. Costanzo, L. Crocco, and D. G. Massa, "Characterization of a laboratory set-up for assessing the feasibility of magnetic nanoparticles enhanced microwave imaging," Proc. EuCAP’16, 1-4, Davos, Switzerland, 2016. Google Scholar
199. Akinci, M. N., M. Cayoren, and E. Gose, "Qualitative microwave imaging of breast cancer with contrast agents," Phys. Med. Biol., Vol. 64, 1-12, 2019. Google Scholar
200. Mazri, T., F. Riouch, and N. A. Idrissi, "Design and simulation of a SP4T switch based on PIN diode suitable for UMTS use," Int. J. Comp. Sci. Network Security, Vol. 11, 77-81, 2011. Google Scholar
201. Wu, H. and R. K. Amineh, "A low-cost and compact three-dimensional microwave holographic imaging system," Electronics, Vol. 8, 1-20, 2019. Google Scholar
202. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Mag., Vol. 12, 78-94, 2011. Google Scholar
203. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas and Propag., Vol. 37, 918-926, 1989. Google Scholar
204. Kaye, C., I. Jeffrey, and J. LoVetri, "Improvement of multi-frequency microwave breast imaging through frequency cycling and tissue-dependent mapping," IEEE Trans. Antennas and Propag., Vol. 67, 7087-7096, 2019. Google Scholar
205. Salucci, M., G. Oliveri, and A. Massa, "GPR prospecting through an inverse-scattering frequency-hopping multifocusing approach," IEEE Trans. Geosci. Remote Sens., Vol. 53, 6573-6592, 2015. Google Scholar
206. Adler, J. and O. Oktem, "Solving ill-posed inverse problems using iterative deep neural networks," Inverse Prob., Vol. 33, 1-24, 2017. Google Scholar
207. Sun, Y., Z. Xia, and U. S. Kamilov, "Efficient and accurate inversion of multiple scattering with deep learning," Opt. Express, Vol. 26, 14678-14688, 2018. Google Scholar
208. Data Science, , Why do convolutional neural networks work?, https://datascience.stackexchange.com/questions/15903/why-do-the-convolutional-neural-networks-work, accessed Nov. 2019.
209. Jin, K. H., M. T. McCann, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Trans. Image Process., Vol. 26, 4509-4522, 2017. Google Scholar
210. Li, L., et al., "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Trans. Antennas and Propag., Vol. 67, 1819-1825, 2019. Google Scholar
211. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 57, 1849-1860, 2019. Google Scholar
212. Sanghvi, Y., Y. Kalepu, and U. K. Khankhoje, "Embedding deep learning in inverse scattering problems," IEEE Trans. Computational Imag., Vol. 6, 46-56, 2019. Google Scholar
213. Rana, S. P., et al., "Machine learning approaches for automated lesion detection in microwave breast imaging clinical data," Scientific Reports, Vol. 9, 1-12, 2019. Google Scholar
214. Ashtiani, F., A. Risi, and F. Aflatouni, "Single-chip nanophotonic near-field imager," Optica, Vol. 6, 1255-1260, 2019. Google Scholar