1. Huang, Y., A. Krayni, A. Hadjem, J. Wiart, C. Person, and N. Varsier, "Comparison of the average global exposure of a population induced by a macro 3G network in urban, suburban and rural areas," 2015 1st URSI Atlantic Radio Science Conference (URSI AT-RASC), 1-1, May 2015. Google Scholar
2. Conil, E., Y. Corre, N. Varsier, A. Hadjem, G. Vermeeren, W. Joseph, S. Aerts, D. Plets, L. Martens, L. M. Correia, and J. Wiart, "Exposure index of EU project lexnet: principles and simulation-based computation," Proceedings of the 8th European Conference on Antennas and Propagation, 3029-3032, IEEE, 2014. Google Scholar
3. Lo-Ndiaye, M., N. Noe, P. Combeau, F. Gaudaire, and Y. Pousset, "Analysis of electromagnetic waves spatio-temporal variability in the context of exposure to mobile telephony base station," Progress In Electromagnetics Research C, Vol. 88, 179-194, 2018. Google Scholar
4. Noe, N., F. Gaudaire, and M. D. B. L. Ndiaye, "Estimating and reducing uncertainties in raytracing techniques for electromagnetic field exposure in urban areas," 2013 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 652-655, Sept. 2013. Google Scholar
5. Alwajeeh, T., P. Combeau, R. Vauzelle, and A. Bounceur, "A high-speed 2.5D ray-tracing propagation model for microcellular systems, application: Smart cities," IEEE European Conference on Antennas and Propagation (EUCAP), Paris, France, Jan. 2017. Google Scholar
6. ANFR, Cartoradio, , , http://www.cartoradio.fr, 2004.
7. Noe, N., F. Gaudaire, M. Lo-Ndiaye, and P. Combeau, "Toward a stand-alone monitoring system for mobile telephony base stations exposure using simulations and smartphones crowdsourcing," First URSI Atlantic Radio Science Conference, Gran Canaria, Canary Islands, Spain, May 18–22, 2015. Google Scholar
8. COST, , Digital mobile radio towards future generations systems, http://www.lx.it.pt/cost-231/final report.htm, 1999.
9. Corre, Y. and Y. Lostanlen, "Three-dimensional urban em wave propagation model for radio network planning and optimization over large areas," IEEE Transactions on Vehicular Technology, Vol. 58, No. 7, 3112-3123, Sept. 2009. Google Scholar
10. Beekhuizen, J., R. Vermeulen, H. Kromhout, A. BuRgi, and A. Huss, "Geospatial modelling of electromagnetic fields from mobile phone base stations," Journal of The Total Environment, 445-446, 202–209, Feb. 2013. Google Scholar
11. Infantolino, J. M. K., M. J. Barney, and R. L. Haupt, "Using a genetic algorithm to determine an optimal position for an antenna mounted on a platform," IEEE Military Communications Conference, IEEE, Boston, MA, USA, Oct. 2009. Google Scholar
12. Kaya, Y., M. Uyar, and R. Tekin, "A novel crossover operator for genetic algorithms: Ring crossover," CoRR, abs/1105.0355, 2011. Google Scholar
13. Vekaria, K. and C. Clack, "Selective crossover in genetic algorithms: An empirical study," Parallel Problem Solving from Nature — PPSN V, 438-447, A. E. Eiben, T. B¨ack, M. Schoenauer, and H.-P. Schwefel, editors, Springer Berlin Heidelberg, Berlin, Heidelberg, 1998. Google Scholar
14. Kalyanmoy, D. and D. Debayan, "Analysing mutation schemes for real-parameter genetic algorithms," Int. J. Artif. Intell. Soft Comput., Vol. 4, No. 1, 1-28, Feb. 2014. Google Scholar
15. Soni, N. and T. Kumar, "Study of various mutation operators in genetic algorithms," International Journal of Computer Science ans Information Technologies, Vol. 5, No. 3, 4519-4521, 2014. Google Scholar
16. Michalewicz, Z., Genetic Algorithms + Data Structures = Evolution Programs, Springer Berlin Heidelberg, 1992.
17. ITU, Attenuation in vegetation, , https://www.itu.int/dms pubrec/itu-r/rec/p/R-REC-P, 833-9-201609-I!!PDF-E.pdf, 2016.