1. Lofas, S., M. Malmqvist, I. Ronnberg, E. Stenberg, L. Bo, and I. Lundstrom, "Bioanalysis with surface plasmon resonance," Sens. Actuators B, Vol. 5, 79-84, 1991.
doi:10.1016/0925-4005(91)80224-8 Google Scholar
2. Ritchie, R. H., "Plasma losses by fast electrons in thin films," Phys. Rev., Vol. 106, 874-881, 1957.
doi:10.1103/PhysRev.106.874 Google Scholar
3. Nylander, C., B. Liedberg, and T. Lind, "Gas detection by means of surface plasmon resonance," Sens. Actuators, Vol. 3, 79-88, 1982.
doi:10.1016/0250-6874(82)80008-5 Google Scholar
4. Anker, J. N., W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater., Vol. 7, 442-453, 2008.
doi:10.1038/nmat2162 Google Scholar
5. Halpern, A. R., J. B. Wood, Y. Wang, and R. M. Corn, "Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption," Acs Nano, Vol. 8, 1022-1030, 2014.
doi:10.1021/nn405868e Google Scholar
6. Gandhi, M. S., S. Chu, K. Senthilnathan, P. R. Babu, K. Nakkeeran, and Q. Li, "Recent advances in plasmonic sensor-based fiber optic probes for biological applications," Applied Sciences, Vol. 9, No. 5, 949, 2019.
doi:10.3390/app9050949 Google Scholar
7. Yanase, Y., T. Hiragun, K. Ishii, T. Kawaguchi, T. Yanase, M. Kawai, K. Sakamoto, and M. Hide, "Surface plasmon resonance for cell-based clinical diagnosis," Sensors, Vol. 14, 4948-4959, 2014.
doi:10.3390/s140304948 Google Scholar
8. Souto, D. E. P., J. Volpe, C. C. Goncalves, C. H. I. Ramos, and L. Kubota, "A brief review on the strategy of developing SPR-based biosensors for application to the diagnosis of neglected tropical diseases," Talanta, Vol. 205, 120122, 2019.
doi:10.1016/j.talanta.2019.120122 Google Scholar
9. Rich, R. L., L. R. Hoth, K. F. Geoghegan, T. A. Brown, P. K. LeMotte, S. P. Simons, P. Hensley, and D. G. Myszka, "Kinetic analysis of estrogen receptor/ligand interactions," Proc. Natl. Acad. Sci., Vol. 99, 8562-8567, USA, 2002.
doi:10.1073/pnas.142288199 Google Scholar
10. Jadhav, G. P., P. K. Prathipati, and H. Chauhan, "Surface plasmon resonance, orbitrap mass spectrometry and raman advancements: Exciting new techniques in drug discovery," Expert Opinion on Drug Discovery, 1-4, 2020. Google Scholar
11. Sipova, H. and J. Homola, "Surface plasmon resonance sensing of nucleic acids: A review," Anal. Chimica Acta, Vol. 773, 9-23, 2013.
doi:10.1016/j.aca.2012.12.040 Google Scholar
12. Yuan, W., H. P. Ho, R. K. Y. Lee, and S. K. Kong, "Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates," Appl. Opt., Vol. 48, 4329-4337, 2009.
doi:10.1364/AO.48.004329 Google Scholar
13. Keshavarz, A. and S. Zangenehzadeh, "Sensitivity enhancement of a surface plasmon resonance biosensor based on adding Pb5Ge3O11 layer to diagnose the hypothyroidism," Plasmonics in Biology and Medecine XVII, Vol. 11257, 1125712, 2020. Google Scholar
14. Sternesjo, A., C. Mellgren, and L. Bjorck, "Determination of sulfamethazine residues in milk by a surface-plasmon resonance-based biosensor assay," Anal. Biochem., Vol. 226, 175-181, 1995.
doi:10.1006/abio.1995.1206 Google Scholar
15. Haasnoot, W., K. Olieman, G. Cazemier, and R. Verheijen, "Direct biosensor immunoassays for the detection of nonmilk proteins in milk powder," J. Agric. Food Chem., Vol. 49, 5201-5206, 2001.
doi:10.1021/jf010440p Google Scholar
16. Forzani, E. S., H. Q. Zhang, W. Chen, and N. J. Tao, "Detection of heavy metal ions indrinking water using a high-resolution differential surface plasmon resonance sensor," Environ. Sci. Technol., Vol. 39, 1257-1262, 2005.
doi:10.1021/es049234z Google Scholar
17. Mahmoudpour, M., J. E. N. Dolatabadi, M. Torbati, and A. Houmayouni-Rad, "Nanomaterials based surface plasmon resonance signal enhancement for detection of environmental pollutions," Biosensors and Bioelectronics, Vol. 127, 72-84, 2019.
doi:10.1016/j.bios.2018.12.023 Google Scholar
18. Pechprasarn, S., K. Ittipornnuson, T. Jungpanich, N. Pensupa, and N. Albutt, "Surface plasmon biosensor platform for food industry," Applied Mechanics and Materials, Vol. 891, 103-108, 2019.
doi:10.4028/www.scientific.net/AMM.891.103 Google Scholar
19. Kretschmann, E., "The determination of the optical constants of metals by excitation of surface plasmons," Z. Physik, Vol. 241, 313-324, 1971.
doi:10.1007/BF01395428 Google Scholar
20. Maurya, J. B., Y. K. Prajapati, S. Raikwar, and J. P. Saini, "A silicon-black phosphorous based surface plasmon resonance sensor for the detection of NO2 gas," Optic, Vol. 160, 428-433, 2018. Google Scholar
21. Homola, J., S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: Review," Sens. Actuators B — Chem., Vol. 54, 3-15, 1999.
doi:10.1016/S0925-4005(98)00321-9 Google Scholar
22. Choi, S. H., Y. L. Kim, and K. M. Byun, "Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors," Optics Express, Vol. 19, 458-466, 2011.
doi:10.1364/OE.19.000458 Google Scholar
23. Yuan, X. C., B. Hong, Y. G. Tan, D. W. Zhang, et al. "Sensitivity-stability optimized surface plasmon resonance sensing with double metal layers," J. Opt. A Pure Appl. Opt., Vol. 8, 959-963, 2006.
doi:10.1088/1464-4258/8/11/005 Google Scholar
24. Szunerits, S., X. Castel, and R. Boukherroub, "Surface plasmon resonance investigation of silver and gold films coated with thin indium tin oxide layers: Influence on stability and sensitivity," J. Phys. Chem. C, Vol. 112, 15813-15817, 2008.
doi:10.1021/jp8049137 Google Scholar
25. Ong, B. H., X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B — Chem., Vol. 114, 1028-1034, 2006.
doi:10.1016/j.snb.2005.07.064 Google Scholar
26. Lin, W. B., M. Lacroix, J. M. Chovelon, et al. "Development of a fiber-optic sensor based on surface plasmon resonance on silver film for monitoring aqueous media," Sens. Actuators B — Chem., Vol. 75, 203-209, 2001.
doi:10.1016/S0925-4005(01)00762-6 Google Scholar
27. Chen, Y., R. S. Zheng, D. G. Zhang, et al. "Bimetallic chips for a surface plasmon resonance instrument," Appl. Opt., Vol. 50, 387-391, 2011.
doi:10.1364/AO.50.000387 Google Scholar
28. Wang, K., R. Fu, G. Wang, H. C. Tran, B. K. Chang, and L. Yang, "High-performance Photonenhanced thermionic emission solar energy converters with AlxGa1−xAs/GaAs cathode under multilevel built-in electric field," Optics Communications, Vol. 402, 85-90, 2017.
doi:10.1016/j.optcom.2017.05.030 Google Scholar
29. Chen, L., Y. Shen, S. Zhang, Y. Qian, and S. Xu, "Comparative research on reflection-mode GaAs photocathode with graded AlxGa1−xAs buffer layer," Optics Communications, Vol. 355, 186-190, 2015.
doi:10.1016/j.optcom.2015.06.053 Google Scholar
30. Lunin, L. S., M. L. Lunina, O. V. Devitsky, and I. A. Sysoev, "Pulsed laser deposition of AlxGa1−xAs and GaP thin films onto Si substrates for photoelectricconverters," Semiconductors, Vol. 51, No. 3, 387-391, 2017.
doi:10.1134/S1063782617030174 Google Scholar
31. Maitra, T., A. Pradhan, S. Mukherjee, et al. "Evaluation of spontaneous superlattice ordering in MOCVD grown AlxGa1−xAs epilayer on GaAs (100) using X-ray reflectivity and rocking curve analysis," Physica E: Low-dimensional Systems and Nanostructures, Vol. 106, 357-362, 2019.
doi:10.1016/j.physe.2018.03.020 Google Scholar
32. Khageswar, S., M. S. Kumar, and G. P. Kumar, "He-Ne laser (632.8 nm) pre-irradiation gives protection against DNA damage induced by a near-infrared trapping beam," J. Biophotonics, Vol. 2, 140-144, 2009.
doi:10.1002/jbio.200810041 Google Scholar
33. Han, L., X. Zhao, T. Huang, H. Ding, and C. Wu, "Comprehensive study of phase-sensitive SPR sensor based on metal-ITO hybrid multilayer," Plasmonics, Vol. 14, No. 6, 1743-1750, 2019.
doi:10.1007/s11468-019-00968-z Google Scholar
34. Gupta, B. D. and A. K Sharma, "Sensitivity evaluation of a multi-layered surface plasmon resonance-based fiber optic sensor: A theoretical study," Sens. Actuators B — Chem., Vol. 107, 40-46, 2005.
doi:10.1016/j.snb.2004.08.030 Google Scholar
35. Kim, J. P. and A. M. Sarangan, "Temperature-dependent sellmeier equation for the refractive index of AlxGa1−xOptics Letters, Vol. 32, No. 5, 536-538, 2007.
doi:10.1364/OL.32.000536 Google Scholar
36. Yamamoto, M., "Surface plasmon resonance (SPR) theory: Tutorial," Rev. Polarography, Vol. 48, No. 3, 209-237, 2002.
doi:10.5189/revpolarography.48.209 Google Scholar
37. Chen, S. and C. Lin, "Sensitivity analysis of grapheme multilayer based surface plasmon resonance biosensor in the ultraviolet, visible and infrared regions," Applied Physics A, 125-230, 2019. Google Scholar
38. Srivastava, A., A. Verma, R. Das, and Y. K. Prajapati, "A theoretical approach to improve the performance of SPR biosensor using MXene and black phosphorus," Optik, Vol. 203, 163430, 2019. Google Scholar