1. Holloway, C. L., E. F. Kuester, J. A. Gordon, et al. "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714 Google Scholar
2. Yu, N., P. Genevet, M. A. Kats, et al. "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713 Google Scholar
3. Li, Z. W., L. R. Huang, K. Lu, et al. "Continuous metasurface for high-performance anomalous reflection ," Applied Physics Express, Vol. 7, No. 11, 112001, 2014.
doi:10.7567/APEX.7.112001 Google Scholar
4. Sun, H., C. Gu, X. Chen, et al. "Ultra-wideband and broad-angle linear polarization conversion metasurface," Journal of Applied Physics, Vol. 121, No. 17, 174902, 2017.
doi:10.1063/1.4982916 Google Scholar
5. Zang, X. F., H. H. Gong, Z. Li, et al. "Metasurface for multi-channel terahertz beam splitters and polarization rotators," Applied Physics Letters, Vol. 112, No. 17, 171111, 2018.
doi:10.1063/1.5028401 Google Scholar
6. Savo, S., D. Shrekenhamer, and W. J. Padilla, "Liquid crystal metamaterial absorber spatial light modulator for THz applications," Advanced Optical Materials, Vol. 2, No. 3, 275-279, 2014.
doi:10.1002/adom.201300384 Google Scholar
7. Liu, S., H. Chen, and T. J. Cui, "A broadband terahertz absorber using multi-layer stacked bars," Applied Physics Letters, Vol. 106, No. 15, 151601, 2015.
doi:10.1063/1.4918289 Google Scholar
8. Lalbakhsh, A., M. U. Afzal, K. P. Esselle, et al. "Multi-objective particle swarm optimization for the realization of a low profile bandpass frequency selective surface," International Symposium on Antennas and Propagation, 809-812, 2015. Google Scholar
9. Lalbakhsh, A., M. U. Afzal, and K. P. Esselle, "Simulation-driven particle swarm optimization of spatial phase shifters," International Conference on Electromagnetics in Advanced Applications, 428-430, 2016. Google Scholar
10. Afzal, M. U., A. Lalbakhsh, K, and P. Esselle, "Electromagnetic-wave beam-scanning antenna using near-field rotatable graded-dielectric plates," Journal of Applied Physics, Vol. 124, No. 23, 234901, 2018.
doi:10.1063/1.5049204 Google Scholar
11. Afzal, M. U., K. P. Esselle, and A. Lalbakhsh, "A metasurface to focus antenna beam at offset angle," 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), 1-4, 2018. Google Scholar
12. Zhu, D. Z., E. B. Whiting, S. D. Campbell, et al. "Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants," ACS Photonics, Vol. 6, No. 11, 2741-2748, 2019.
doi:10.1021/acsphotonics.9b00717 Google Scholar
13. Lalbakhsh, P., B. Zaeri, and A. Lalbakhsh, "An improved model of ant colony optimization using a novel pheromone update strategy," ICE Transactions on Information and Systems, Vol. 96, No. 11, 2309-2318, 2013.
doi:10.1587/transinf.E96.D.2309 Google Scholar
14. Cui, T. J., M. Q. Qi, X. Wan, et al. "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, No. 10, e218, 2014.
doi:10.1038/lsa.2014.99 Google Scholar
15. Hao, H., S. Du, and T. Zhang, "Small-size broadband coding metasurface for RCS reduction based on particle swarm optimization algorithm," Progress In Electromagnetics Research M, Vol. 81, 97-105, 2019.
doi:10.2528/PIERM19040905 Google Scholar
16. Zhou, Y., X. Y. Cao, J. Gao, et al. "RCS reduction for grazing incidence based on coding metasurface," Electronics Letters, Vol. 53, No. 20, 1381-1383, 2017.
doi:10.1049/el.2017.2414 Google Scholar
17. Liu, G., J. Liu, S. Zhao, et al. "Ultra-wideband low-detectable coding metasurface," Chinese Journal of Electronics, Vol. 28, No. 6, 1265-1270, 2019.
doi:10.1049/cje.2019.07.002 Google Scholar
18. Jing, H. B., Q. Ma, G. D. Bai, et al. "Anomalously perfect reflections based on 3-Bit coding metasurfaces," Advanced Optical Materials, Vol. 7, No. 9, 1801742, 2019.
doi:10.1002/adom.201801742 Google Scholar
19. Gao, X., W. L. Yang, H. F. Ma, et al. "A reconfigurable broadband polarization converter based on an active metasurface," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 11, 6086-6095, 2018.
doi:10.1109/TAP.2018.2866636 Google Scholar
20. Su, J., H. He, Z. Li, et al. "Uneven-layered coding metamaterial tile for ultra-wideband RCS reduction and diffuse scattering," Scientific Reports, Vol. 8, No. 1, 8182, 2018.
doi:10.1038/s41598-018-26386-5 Google Scholar
21. Sun, H., C. Gu, X. Chen, et al. "Broadband and broad-angle polarization-independent metasurface for radar cross section reduction," Scientific Reports, Vol. 7, 40782, 2017.
doi:10.1038/srep40782 Google Scholar
22. Bai, G. D., Q. Ma, W. K. Cao, et al. "Manipulation of electromagnetic and acoustic wave behaviors via shared digital coding metallic metasurface," Advanced Intelligent Systems, Vol. 1, No. 5, 1900038, 2019.
doi:10.1002/aisy.201900038 Google Scholar
23. Liu, S., T. J. Cui, L. Zhang, et al. "Convolution operations on coding metasurface to reach flexible and continuous controls of terahertz beams," Advanced Science, Vol. 3, No. 10, 1600156, 2016.
doi:10.1002/advs.201600156 Google Scholar
24. Fang, B., X. Bie, Z. Yan, et al. "Manipulation of main lobe number and azimuth angle of terahertz-transmitted beams by matrix-form-coding metasurface," Applied Physics A, Vol. 125, No. 9, 651, 2019.
doi:10.1007/s00339-019-2946-5 Google Scholar
25. Wu, R. Y., C. B. Shi, S. Liu, et al. "Addition theorem for digital coding metamaterials," Advanced Optical Materials, Vol. 6, No. 5, 1701236, 2018.
doi:10.1002/adom.201701236 Google Scholar
26. Jing, Y., Y. Li, J. Zhang, et al. "Fast coding method of metasurfaces based on 1D coding in orthogonal directions," Journal of Physics D: Applied Physics, Vol. 51, No. 47, 475103, 2018.
doi:10.1088/1361-6463/aae2fd Google Scholar