Vol. 93
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-17
A Polarization Reconfigurable Cylindrical Dielectric Resonator Antenna
By
Progress In Electromagnetics Research M, Vol. 93, 1-9, 2020
Abstract
A reconfigurable cylindrical dielectric resonator antenna with polarization diversity is proposed for S-band and C-band in this paper. An annular slot is used as the feeding aperture, which can not only excite two orthogonal modes (HEMx11δ and HEMy11δ) of the cylindrical dielectric resonator at 3.2 GHz, but also produce a 90˚ phase difference. Two switches, whose locations are carefully optimized, are used to control HEMx11δ being a phase-lagging or phase-leading component. Thus the antenna can achieve either left- or right-hand circular polarization (LHCP or RHCP) in S band, depending on the switch states. The higher order mode of HEM21δ is also excited at 4.7 GHz for linear polarization (LP), regardless of the switch states. With the advantages of compact structure, simple biasing network and easy fabrication, this antenna can be widely applied to wireless communication systems, especially for polarization diversity applications.
Citation
Lei Zhong, "A Polarization Reconfigurable Cylindrical Dielectric Resonator Antenna," Progress In Electromagnetics Research M, Vol. 93, 1-9, 2020.
doi:10.2528/PIERM20040804
References

1. Long, S., M. McAllister, and L. Shen, "The resonant cylindrical dielectric cavity antenna," IEEE Trans. Antennas Propag., Vol. 31, No. 3, 406-412, 1983.
doi:10.1109/TAP.1983.1143080

2. Fan, Z. and Y. Antar, "Slot-coupled dr antenna for dual-frequency operation," IEEE Trans. Antennas Propag., Vol. 45, No. 2, 306-308, 1997.
doi:10.1109/8.560351

3. Liu, H., Y. Liu, M. Wei, and S. Gong, "Dual-broadband dielectric resonator antenna based on modified sierpinski fractal geometry," Electron. Lett., Vol. 51, No. 11, 806-808, 2015.
doi:10.1049/el.2015.0302

4. Altaf, A., J. Jung, Y. Yang, K. Lee, and K. C. Hwang, "Reconfigurable dual-/triple-band circularly polarized dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 443-447, 2020.
doi:10.1109/LAWP.2020.2970171

5. Chen, H.-M., Y.-K. Wang, Y.-F. Lin, S.-C. Lin, and S.-C. Pan, "A compact dual-band dielectric resonator antenna using a parasitic slot," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 173-176, 2009.
doi:10.1109/LAWP.2008.2001119

6. Guha, D., P. Gupta, and C. Kumar, "Dualband cylindrical dielectric resonator antenna employing HEM11δ and HEM12δ modes excited by new composite aperture," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 433-438, 2015.
doi:10.1109/TAP.2014.2368116

7. Sharma, A., G. Das, S. Gupta, and R. K. Gangwar, "Quad-band quad-sense circularly polarized dielectric resonator antenna for gps/cnss/wlan/wimax applications," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 403-407, 2020.
doi:10.1109/LAWP.2020.2969743

8. Fang, X., K. W. Leung, and E. H. Lim, "Singly-fed dual-band circularly polarized dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 995-998, 2014.
doi:10.1109/LAWP.2014.2324612

9. Wang, K. X. and H. Wong, "A circularly polarized antenna by using rotated-stair dielectric resonator," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 787-790, 2015.
doi:10.1109/LAWP.2014.2385475

10. Chowdhury, R. and R. K. Chaudhary, "An approach to generate circular polarization in a modified cylindrical-shaped dielectric resonator antenna using pmc boundary approximation," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1727-1731, 2018.
doi:10.1109/LAWP.2018.2864819

11. Motevasselian, A., A. Ellgardt, and B. Jonsson, "A helix excited circularly polarized hollow cylindrical dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 535-538, 2013.
doi:10.1109/LAWP.2013.2257942

12. Chair, R., S. S. Yang, A. Kishk, K. F. Lee, K. M. Luk, et al. "Aperture fed wideband circularly polarized rectangular stair shaped dielectric resonator antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 4, 1350-1352, 2006.
doi:10.1109/TAP.2006.872665

13. Wang, X., S. Tang, L. Yang, and J. Chen, "Differential-fed dual-polarized dielectric patch antenna with gain enhancement based on higher order modes," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 502-506, 2020.
doi:10.1109/LAWP.2020.2964569

14. Lim, E. H., K. W. Leung, and X. Fang, "The compact circularly-polarized hollow rectangular dielectric resonator antenna with an underlaid quadrature coupler," IEEE Trans. Antennas Propag., Vol. 59, No. 1, 288-293, 2011.
doi:10.1109/TAP.2010.2090454

15. Zou, M., J. Pan, and Z. Nie, "A wideband circularly polarized rectangular dielectric resonator antenna excited by an archimedean spiral slot," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 446-449, 2015.
doi:10.1109/LAWP.2014.2364296

16. Zhong, L., J. S. Hong, and H. C. Zhou, "A novel pattern-reconfigurable cylindrical dielectric resonator antenna with enhanced gain," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1253-1256, 2016.
doi:10.1109/LAWP.2015.2504127

17. Guha, D., H. Gajera, and C. Kumar, "Cross-polarized radiation in a cylindrical dielectric resonator antenna: Identification of source, experimental proof, and its suppression," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1863-1867, 2015.
doi:10.1109/TAP.2015.2398127

18. Luk, K. M. and K. W. Leung, Dielectric Resonator Antennas, Research Studies Press, Hertfordshire, U.K., 2003.

19. Garg, R., I. Bahl, and M. Bozzi, Microstrip Lines and Slotlines, Artech House, 2013.