Vol. 94
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-07-14
Comparative Study of Circular Flat Spiral Coils Structure Effect on Magnetic Resonance Wireless Power Transfer Performance
By
Progress In Electromagnetics Research M, Vol. 94, 119-129, 2020
Abstract
Wireless power transfer (WPT) via coupled magnetic resonance is anencouraging technology to be applied in many fields. In this paper, a method using a circular coil spiral inductor structure to wirelessly transfer energy is proposed. It represents the characteristic of six parallel air core inductor mutually coupled in the free space for wireless power transfer system. Based on the analytical model and circuit theory, the relationship between the coil design parameters and the system performance is deduced, and the effects of the outer radius, inner radius, channel width and coil turns are thoroughly studied to improve the system performance at different axial distances and in lateral misalignment. Also, an elimination method for transmission efficiency dead-zone (TEDZ) is proposed. The proposed method utilizes angular rotation of the receiver (Px) to eliminate the zero-coupling point which causes TEDZ and boosts the coupling coefficient such that the TEDZ is eliminated, and the high efficiency region is extended.
Citation
Naamane Mohdeb, "Comparative Study of Circular Flat Spiral Coils Structure Effect on Magnetic Resonance Wireless Power Transfer Performance," Progress In Electromagnetics Research M, Vol. 94, 119-129, 2020.
doi:10.2528/PIERM20051705
References

1. Tec, K. M., I. Takehir, O. Sehoo, and H. Yoich, "Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling," IEEE Tran. Ind. Electro., Vol. 6, No. 9, 3689-3698, Sep. 2013.

2. Che, L. H., S. Liu, Y. C. Zho, and T. J. Cui, "An optimizable circuit structure for high-efficiency wireless power transfer," IEEE Trans. Ind. Electro., Vol. 6, No. 1, 339-349, Jan. 2013.

3. Zhang, Y., Z. Zhao, and K. Chen, "Frequency decrease analysis of resonant wireless power transfer," IEEE Transaction on Power Electronics, Vol. 29, No. 3, 1058-1063, Mar. 2014.
doi:10.1109/TPEL.2013.2277783

4. Imura, T. and Y. Hori, "Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula," IEEE Trans. Ind. Electron., Vol. 58, No. 10, 4746-4752, Oct. 2011.
doi:10.1109/TIE.2011.2112317

5. How, J., Q. Chen, S.-C. Wong, C. K. Tse, and X. Ruan, "Analysis and control of series/series-parallel compensated resonant converters for contactless power transfe," IEEE J. Emerg. Sel. Topics Power Electron., Vol. 3, No. 1, 124-136, Mar. 2015.
doi:10.1109/JESTPE.2014.2336811

6. Zhang, W. and C. C. Mi, "Compensation topologies of high-power wireless power transfer systems," IEEE Transactions on Vehicular Technology, Vol. 65, No. 6, 4768-4778, Jun. 2016.
doi:10.1109/TVT.2015.2454292

7. Wei, X., Z. Wang, and H. Dai, "A critical review of wireless power transfer via strongly coupled magnetic resonances," Energies, 4316-4341, 2014.
doi:10.3390/en7074316

8. Kim, D. and Y. Park, "Calculation of the inductance and AC resistance of planar rectangular coils," Electronics Letters, Vol. 52, No. 15, 1321-1323, Jul. 2016.
doi:10.1049/el.2016.0696

9. Thompson, M., "Inductance calculation techniques --- Part II: Approximations and handbook methods," Power Control and Intelligent Motion, Dec. 1999.

10. Wang, Q., W. Che, M. Dionigi, F. Mastri, M. Mongiardo, and G. Monti, "Gains maximization via impedance matching networks for wireless power transfer," Progress In Electromagnetics Research, Vol. 164, 135-153, 2019.
doi:10.2528/PIER18102402