1. Sauleau, R., C. A. Fernandes, and J. R. Costa, "Review of lens antenna design and technologies for mm-wave shaped-beam applications," ANTEM 2005 --- 11th Int. Symp. Antenna Technol. Appl. Electromagn. Conf. Proc., 1-5, St. Malo, France, 2005. Google Scholar
2. Sebastian, M. T. and H. Jantunen, "Low loss dielectric materials for LTCC applications: A review," Int. Mater. Rev., Vol. 53, No. 2, 57-90, Mar. 2008.
doi:10.1179/174328008X277524 Google Scholar
3. Kahari, H., M. Teirikangas, J. Juuti, and H. Jantunen, "Dielectric properties of lithium molybdate ceramic fabricated at room temperature," J. Am. Ceram. Soc., Vol. 97, No. 11, 3378-3379, Nov. 2014.
doi:10.1111/jace.13277 Google Scholar
4. Kahari, H., M. Teirikangas, J. Juuti, and H. Jantunen, "Improvements and modifications to room-temperature fabrication method for dielectric Li2MoO4 ceramics," J. Am. Ceram. Soc., Vol. 98, No. 3, 687-689, Mar. 2015.
doi:10.1111/jace.13471 Google Scholar
5. Kahari, H., P. Ramachandran, J. Juuti, and H. Jantunen, "Room-temperature-densified Li2MoO4 ceramic patch antenna and the effect of humidity," Int. J. Appl. Ceram. Technol., Vol. 14, No. 1, 50-55, Jan. 2017.
doi:10.1111/ijac.12615 Google Scholar
6. Kahari, H., M. Teirikangas, J. Juuti, and H. Jantunen, "Room-temperature fabrication of microwave dielectric Li2MoO4-TiO2 composite ceramics," Ceram. Int., Vol. 42, No. 9, 11442-11446, Jul. 2016.
doi:10.1016/j.ceramint.2016.04.081 Google Scholar
7. Ji, Y., K. Song, X. Luo, B. Liu, H. B. Bafrooei, and D. Wang, "Microwave dielectric properties of (1 - x) Li2MoO4-xMg2SiO4 composite ceramics fabricated by cold sintering process," Front. Mater., 6, Oct. 2019. Google Scholar
8. Vaataja, M., H. Kahari, K. Ohenoja, M. Sobocinski, J. Juuti, and H. Jantunen, "3D printed dielectric ceramic without a sintering stage," Sci. Rep., Vol. 8, No. 1, 15955, Dec. 2018.
doi:10.1038/s41598-018-34408-5 Google Scholar
9. Nelo, M., H. Liimatainen, M. Vaataja, J. Ukkola, J. Juuti, and H. Jantunen, "Solid air-low temperature manufacturing of ultra-low permittivity composite materials for future telecommunication systems," Front. Mater., 6, 2019. Google Scholar
10. Lauwers, B., F. Klocke, A. Klink, A. Erman Tekkaya, R. Neugebauer, and D. Mcintosh, "Hybrid processes in manufacturing," CIRP Ann., Vol. 63, No. 2, 561-583, 2014.
doi:10.1016/j.cirp.2014.05.003 Google Scholar
11. Hinton, J., M. Mirgkizoudi, A. Campos-Zatarain, D. Flynn, R. A. Harris, and R. W. Kay, "Digitally-driven hybrid manufacture of ceramic thick-film substrates," 2018 7th Electron. Syst. Technol. Conf., 1-5, IEEE, Dresden, Germany, Sep. 2018. Google Scholar
12. Jankovic, U., N. Mohottige, D. Budimir, and O. Glubokov, "Hybrid manufactured waveguide resonators and filters for mm-wave applications," 2017 IEEE MTT-S Int. Microw. Work. Ser. Adv. Mater. Process. RF THz Appl., 1-3, IEEE, Pavia, Italy, Sep. 2017. Google Scholar
13. Revier, D. L. and M. M. Tentzeris, "A low-cost, single platform, hybrid manufacturing system for RF passives," 2017 IEEE Radio Wirel. Symp., 83-85, IEEE, Phoenix, AZ, USA, Jan. 2017. Google Scholar
14. Chen, Z., Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, and Y. He, "3D printing of ceramics: A review," J. Eur. Ceram. Soc., Vol. 39, No. 4, 661-667, Apr. 2019.
doi:10.1016/j.jeurceramsoc.2018.11.013 Google Scholar