Vol. 104
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-08-11
Friction-Free Permanent Magnet Bearings for Rotating Shafts: A Comprehensive Review
By
Progress In Electromagnetics Research C, Vol. 104, 171-186, 2020
Abstract
This article presents a comprehensive review of modeling,analysis,and development of permanent magnet bearings (PMB) for rotating shafts. The different configurations of PMB are highlighted with relevant approaches to estimate their features. The progress in mathematical approaches adopted and optimization of the static and dynamic bearing characteristics in terms of accuracy are discussed in depth. Further, key developments on instability issues and their realization in combination with other bearings for rotors stability in low and high-speed applications are reviewed. Finally, concluding remarks on key aspects to be followed in the design and development of PMB are presented.
Citation
Siddappa Iranna Bekinal, and Mrityunjay Doddamani, "Friction-Free Permanent Magnet Bearings for Rotating Shafts: A Comprehensive Review," Progress In Electromagnetics Research C, Vol. 104, 171-186, 2020.
doi:10.2528/PIERC20060402
References

1. Schweitzer, G. and H. Maslen, Magnetic Bearings, Theory, Design and Application to Rotating Machinery, Springer, 2009.

2. Schweitzer, G., "Magnetic bearings-applications, concepts and theory," JSME International Journal Series III, Vol. 33, No. 1, 13-18, 1990.        Google Scholar

3. Coombs, T., A. M. Campbell, R. Storey, and R. Weller, "Superconducting magnetic bearings for energy storage flywheels," IEEE Trans. on Applied Super Conductivity, Vol. 9, No. 2, 968-971, 1999.
doi:10.1109/77.783459        Google Scholar

4. Mukoyama, S., K. Nakao, H. Sakamoto, et al. "Development of superconducting magnetic bearing for 300 kw flywheel energy storage system," IEEE Trans. on Applied Super Conductivity, Vol. 27, No. 4, 1-4, 2017.
doi:10.1109/TASC.2017.2652327        Google Scholar

5. Amati, N., X. De Lepine, and A. Tonoli, "Modeling of electrodynamic bearings," ASME Journal of Vibration and Acoustics, Vol. 130, 061007(1–9), 2008.        Google Scholar

6. Detoni, J. G., "Progress on electrodynamic passive magnetic bearings for rotor levitation," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 228, No. 10, 1829-1844, 2014.
doi:10.1177/0954406213511798        Google Scholar

7. Detoni, J. G., F., Impinna, A. Tonoli, and N. Amati, "Unified modelling of passive homopolar and heteropolar electrodynamic bearings," Journal of Sound and Vibration, Vol. 331, No. 19, 4219-4232, 2012.
doi:10.1016/j.jsv.2012.04.036        Google Scholar

8. Baermann, M., German patent application B, 30042 dated 1954 (German specification No. 1071891).

9. Backers, F. T., "A magnetic journal bearing," Philips Tech. Rev., Vol. 22, 232-238, 1960–61.        Google Scholar

10. Jungmayr, G., E. Marth, M. Panholzer, W. Amrhein, F. Jeske, and M. Reisinger, "Design of a highly reliable fan with magnetic bearings," Proc. IMechE, Part I: J. Systems and Control Engineering, Vol. 230, 361-369, 2016.
doi:10.1177/0959651815602829        Google Scholar

11. Ohji, T., et al., "Conveyance test by oscillation and rotation to a permanent magnet repulsive-type conveyor," IEEE Trans. Magn., Vol. 40, No. 4, 3057-3059, 2004.
doi:10.1109/TMAG.2004.832263        Google Scholar

12. Kriswanto and Jamari, "Radial forces analysis and rotational speed test of radial permanent magnetic bearing for horizontal wind turbine applications," 3rd International Conference on Advanced Materials and Science and Technology (ICAMST 2015), AIP Conference Proceedings, Semarang, Indonesia, 0200341(1–10), 2015.        Google Scholar

13. Fang, J., C. Wang, and J. Tang, "Modelling and analysis of a novel conical magnetic bearing for verniergimballing magnetically suspended flywheel," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 228, 2416-2425, 2014.
doi:10.1177/0954406213517488        Google Scholar

14. Sotelo, G. G., R. Andrade, and A. C. Ferreira, "Magnetic bearing sets for a flywheel system," IEEE Trans. on Applied Super Conductivity, Vol. 17, No. 2, 2150-2153, 2007.
doi:10.1109/TASC.2007.899268        Google Scholar

15. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 9, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443        Google Scholar

16. Le, Y., J. Fang, and J. Sun, "Design of a Halbach array permanent magnet damping system for high speed compressor with large thrust load," IEEE Trans. Magn., Vol. 51, No. 1, 1-9, 2015.        Google Scholar

17. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
doi:10.1109/TMAG.1978.1060019        Google Scholar

18. Yonnet, J. P., "Permanent magnetic bearings and couplings," IEEE Trans. Magn., Vol. 17, No. 1, 1169-1173, 1981.
doi:10.1109/TMAG.1981.1061166        Google Scholar

19. Delamare, J., E. Rulliere, and J. P. Yonnet, "Classification and synthesis of permanent magnet bearing configurations," IEEE Trans. Magn., Vol. 31, No. 6, 4190-4192, 1995.
doi:10.1109/20.489922        Google Scholar

20. Ravaud, R. and G. Lemarquand, "Comparison of the Coulombian and Amperian current models for calculating the magnetic field produced by radially magnetized arc-shaped permanent magnets," Progress In Electromagnetics Research, Vol. 95, 309-327, 2009.        Google Scholar

21. Yonnet, J. P., G. Lemarquand, S. Hemmerlin, and E. Olivier-Rulliere, "Stacked structures of passive magnetic bearings," Journal Applied Physics, Vol. 70, 6633-6635, 1991.
doi:10.1063/1.349857        Google Scholar

22. Marinescu, M. and N. Marinescu, "A new improved method of for computation of radial stiffness of permanent magnet bearings," IEEE Trans. Magn., Vol. 30, 3491-3494, 1994.
doi:10.1109/20.312691        Google Scholar

23. Lang, M., "Fast calculation method for the forces and stiffness of permanent-magnet bearings," Proceedings of Eighth International Symposium on Magnetic Bearings, 533-537, Mito, Japan, 2002.        Google Scholar

24. Jiang, S., Y. Liang, and H. Wang, "A simplified method of calculating axial force for a permanent magnetic bearing," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 224, 703-708, 2009.        Google Scholar

25. Paden, B., N. Groom, and J. Antaki, "Design formulas for permanent-magnet bearings," ASME Trans., Vol. 125, 734-739, 2003.
doi:10.1115/1.1625402        Google Scholar

26. Yang, H., R. Zhao, and S. Yang, "New analytical solution for the analysis and design of permanent magnet thrust bearings," Journal Zhejiang University. SC. A, Vol. 10, No. 8, 1199-1204, 2009.
doi:10.1631/jzus.A0820520        Google Scholar

27. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, 2008.
doi:10.1109/TMAG.2008.923096        Google Scholar

28. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "The three exact components of the magnetic field created by a radially magnetized tile permanent magnet," Progress In Electromagnetics Research, Vol. 88, 307-319, 2008.
doi:10.2528/PIER08112708        Google Scholar

29. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Discussion about the analytical calculation of the magnetic field created by permanent magnets," Progress In Electromagnetics Research B, Vol. 11, 281-297, 2009.
doi:10.2528/PIERB08112102        Google Scholar

30. Tan, Q., W. Li, and B. Liu, "Investigations on a permanent magnetic hydrodynamic journal bearing," Tribology International, Vol. 35, 443-448, 2002.
doi:10.1016/S0301-679X(02)00026-9        Google Scholar

31. Samanta, P. and H. Hirani, "Magnetic bearing configurations: Theoretical and experimental studies," IEEE Trans. Magn., Vol. 44, No. 2, 292-300, 2008.
doi:10.1109/TMAG.2007.912854        Google Scholar

32. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088        Google Scholar

33. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 3334-3342, 2009.
doi:10.1109/TMAG.2009.2025315        Google Scholar

34. Ravaud, R. and G. Lemarquand, "Halbach structures for permanent magnets bearings," Progress In Electromagnetics Research M, Vol. 14, 263-277, 2010.
doi:10.2528/PIERM10100401        Google Scholar

35. Jiang, W., et al., "Forces and moments in axially polarized radial permanent magnet bearings," Proceedings of Eighth International Symposium on Magnetic Bearings, 521-526, Mito, Japan, 2002.        Google Scholar

36. Jiang, W., et al., "Stiffness analysis of axially polarized radial permanent magnet bearings," Proceedings of Eighth International Symposium on Magnetic Bearings, 527-532, Mito, Japan, 2002.        Google Scholar

37. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of axially magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.
doi:10.2528/PIERB12080910        Google Scholar

38. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of radial magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 47, 87-105, 2013.
doi:10.2528/PIERB12102005        Google Scholar

39. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of radial magnetized permanent magnet bearing characteristics for five degrees of freedom," Progress In Electromagnetics Research B, Vol. 52, 307-326, 2013.
doi:10.2528/PIERB13032102        Google Scholar

40. Bekinal, S. I., T. R. Anil, S. Jana, S. S. Kulkarni, A. Sawant, N. Patil, and S. Dhond, "Permanent magnet thrust bearing: Theoretical and experimental results," Progress In Electromagnetics Research B, Vol. 56, 269-287, 2013.
doi:10.2528/PIERB13101602        Google Scholar

41. Tian, L., A. Xun-Peng, and Y. Tian, "Analytical model of magnetic force for axial stack permanent-magnet bearings," IEEE Trans. Magn., Vol. 48, No. 10, 2592-2599, 2012.
doi:10.1109/TMAG.2012.2197635        Google Scholar

42. Marth, E., G. Jungmayr, and W. Amrhein, "A 2-D-based analytical method for calculating permanent magnetic ring bearings with arbitrary magnetisation and its application to optimal bearing design," IEEE Trans. Magn., Vol. 50, No. 5, 1-8, 2014.
doi:10.1109/TMAG.2013.2295550        Google Scholar

43. Bekinal, S. I., M. R. Doddamani, and N. D. Dravid, "Utilization of low computational cost two dimensional analytical equations in optimization of multi rings permanent magnet thrust bearings," Progress In Electromagnetics Research M, Vol. 62, 51-63, 2017.
doi:10.2528/PIERM17072007        Google Scholar

44. Bekinal, S. I. and S. Jana, "Generalized three-dimensional mathematical models for force and stiffness in axially, radially, and perpendicularly magnetized passive magnetic bearings with ‘n’ number of ring pairs," ASME Journal of Tribolog, Vol. 138, No. 3, 2016.        Google Scholar

45. Zhang, L., "Design, analysis, and experiment of multi-ring permanent magnet bearings by means of equally distributed sequences based Monte Carlo method," Mathematical Problems in Engineering, 1-17, 2019.        Google Scholar

46. Lijesh, K. P. and H. Hirani, "Development of analytical equations for design and optimization of axially polarised radial passive magnetic bearing," ASME Journal of Tribology, Vol. 137, 011103(1–9), 2015.        Google Scholar

47. Lijesh, K. P., "Design methodology for monolithic layer radial passive magnetic bearing," Proc. IMechE, Part J: Journal of Engineering Tribology, Vol. 233, No. 6, 992-1000, 2019.        Google Scholar

48. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE Trans. Magn., Vol. 42, No. 8, 2038-2042, 2006.        Google Scholar

49. Yoo, S. Y., W. Kim, S. Kim, W. Lee, Y. Bae, and M. Noh, "Optimal design of non-contact thrust bearing using permanent magnet rings," Int. Journal of Precision Engg. and Manufacturing, Vol. 12, No. 6, 1009-1014, 2011.        Google Scholar

50. Beneden, M. V., V. Kluyskens, and B. Dehez, "Optimal sizing and comparison of permanent magnet thrust bearings," IEEE Trans. Magn., Vol. 53, No. 2, 2017.        Google Scholar

51. Bekinal, S. I., M. R. Doddamani, and S. Jana, "Optimization of axially magnetised stack structured Permanent magnet thrust bearing using three dimensional mathematical model," ASME Journal of Tribology, Vol. 139, No. 3, 031101(1–9), 2017.        Google Scholar

52. Bekinal, S. I., M. R. Doddamani, B. V. Mohan, and S. Jana, "Generalized optimization procedure for rotational magnetized direction permanent magnet thrust bearing configuration," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 233, 2563-2573, 2019.        Google Scholar

53. Lijesh, K. P., M. R. Doddamani, and S. I. Bekinal, "A pragmatic optimization of axial stack-radial passive magnetic bearings," ASME Journal of Tribology, Vol. 140, 021901(1–9), 2018.        Google Scholar

54. Lijesh, K. P., M. R. Doddamani, S. I. Bekinal, and S. M. Muzakkir, "Multi-objective optimization of stacked radial passive magnetic bearing," Proc. IMechE Part J: J. Engineering Tribology, Vol. 232, 1140-1159, 2018.        Google Scholar

55. Sodano, H. A., D. J. Inman, and W. K. Belvin, "Development of a new passive-active magnetic damper for vibration suppression," ASME Journal of Vibration and Acoustics, Vol. 128, 318-327, 2006.        Google Scholar

56. Sodano, H. A. and D. J. Inman, "Modeling of a new active eddy current vibration control system," ASME Journal of Dynamic Systems, Measurement and Control, Vol. 130, 021009-1-11, 2008.        Google Scholar

57. Filatov, A., L. Hawkins, V. Krishnan, et al. "Active axial electromagnetic damper," Proceedings of Eleventh International Symposium on Magnetic Bearings, Japan, Nara, 2000.        Google Scholar

58. Tonoli, A., "Dynamic characteristics of eddy current dampers and couplers," Journal of Sound and Vibration, Vol. 301, 576-591, 2006.        Google Scholar

59. Sodano, H. A., J. S. Bae, D. J. Inman, and W. K. Belvin, "Improved concept and model of eddy current damper," ASME Journal of Vibration and Acoustics, Vol. 128, No. 3, 031002(1–10), 2006.        Google Scholar

60. Tonoli, A. and N. Amati, "Dynamic modelling and experimental validation of eddy current dampers and couplers," ASME Journal of Vibration and Acoustics, Vol. 130, No. 2, 021011(1–9), 2008.        Google Scholar

61. Ribeiro, E. A., J. T. Pereira, and C. A. Bavastri, "Passive vibration control in rotor dynamics: optimization of composed support using viscoelastic materials," Journal of Sound and Vibration, Vol. 351, 43-56, 2015.        Google Scholar

62. Tecza, J. A., Damping for passive magnetic bearings, Patent 5521448, USA, 1996.

63. Imlach, J., Passive magnetic support and damping system, Patent 6448679 B1, USA, 2002.

64. Detoni, J. G., Q. Cui, N. Amati, and A. Tonoli, "Modelling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications," Journal of Sound and Vibration, Vol. 373, 52-65, 2016.        Google Scholar

65. Cheah, S. K. and H. A. Sodano, "Novel eddy current damping mechanism for passive magnetic bearings," Journal of Vibration and Control, Vol. 14, No. 11, 1749-1766, 2008.        Google Scholar

66. Safaeian, R. and H. Heydari, "Comprehensive comparison of different structures of passive permanent magnet bearings," IET Electric Power Applications, Vol. 12, No. 2, 179-187, 2017.        Google Scholar

67. Safaeian, R. and H. Heydari, "Optimal design of a compact passive magnetic bearing based on dynamic modelling," IET Electric Power Applications, Vol. 13, No. 6, 720-729, 2019.        Google Scholar

68. Marth, E., G. Jungmayr, and W. Amrhein, "Fundamental considerations on introducing damping to passively magnetically stabilized rotor systems," Advances in Mechanical Engineering, Vol. 8, No. 12, 1-9, 2016.        Google Scholar

69. D’Angola, A., G. Carbone, L. Mangialardi, and C. Serioa, "Non-linear oscillations in a passive magnetic suspension," International Journal of Non-Linear Mechanics, Vol. 41, 1039-1049, 2006.        Google Scholar

70. Sugai, T., T. Inoue, and V. Ishida, "Nonlinear theoretical analysis of contacting forward whirling vibration of a rotating shaft supported by a repulsive magnetic bearing," Journal of Sound and Vibration, Vol. 332, 2735-2749, 2013.        Google Scholar

71. Lijesh, K. P. and H. Hirani, "Magnetic bearing using RMD configuration," ASME Journal of Tribology, Vol. 137, No. 4, 42201, 2015.        Google Scholar

72. Passenbrunner, J., G. Jungmayr, and W. Amrhein, "Design and analysis of a 1d actively stabilized system with viscoelastic damping support," Actuators, Vol. 8, No. 33, 2-18, 2019.        Google Scholar

73. Earnshaw, S., "On the nature of the molecular forces which regulate the constitution of the luminiferous ether," Transactions of the Cambridge Philosophical Society, Vol. 7, 97-112, 1842.        Google Scholar

74. McLachlan, N. W., Theory and Application of Mathieu Functions, Claredon Oxford, 1947.

75. Bassani, R., "A stability space of a magneto-mechanical bearing," ASME, J. Dyn. Sys. Meas. Control, Vol. 129, No. 2, 178-181, 2007.        Google Scholar

76. Bassani, R., "Stability of permanent magnets bearings under parametric excitations," Tribology Trans., Vol. 48, 457-463, 2005.        Google Scholar

77. Bassani, R., "Dynamic stability of passive magnetic bearings," Nonlinear Dynamics, Vol. 50, 161-168, 2007.        Google Scholar

78. Takeshi, M. and A. Mitsunori, "Repulsive magnetic bearing using a piezoelectric actuator for stabilization," JSME Int. Journal C: Mechanical Systems Machine Elements and Manufacturing, Vol. 46, 378-384, 2003.        Google Scholar

79. Bassani, R., "Magnetoelastic stability of magnetic axial bearings," Tribology Letters, Vol. 49, 397-401, 2013.        Google Scholar

80. Delamare, J., J. P. Yonnet, and E. Rulliere, "A compact magnetic suspension with only one axis control," IEEE Trans. Magn., Vol. 30, No. 6, 4746-4748, 1994.        Google Scholar

81. Siebert, M., B. Ebihara, and R. Jansen, "A passive magnetic bearing flywheel," NASA/TM — 2002-211159, 2002.        Google Scholar

82. Qian, K. X., P. Zeng, W. M. Ru, and H. Y. Yuan, "New concepts and new design of permanent maglev rotary artificial heart blood pumps," Medical Engineering & Physics, Vol. 28, No. 4, 383-388, 2006.        Google Scholar

83. Mukhopadhyay, S. C., et al., "Design, analysis and control of a new repulsive type magnetic bearing," IEE Proc. on Electrical Power Applications, Vol. 146, No. 1, 33-40, 1999.        Google Scholar

84. Mukhopadhyay, S. C., et al., "Modeling and control of a new horizontal shaft hybrid type magnetic bearing," IEEE Trans. Ind. Electronics, Vol. 47, No. 1, 100-108, 2000.        Google Scholar

85. Mukhopadhaya, S. C., et al., "Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension," IEEE Trans. Magn., Vol. 39, 3220-3222, 2003.        Google Scholar

86. Hussien, A., et al., "Application of the repulsive-type magnetic bearing for manufacturing micromass measurement balance equipment," IEEE Trans. Magn., Vol. 41, No. 10, 3802-3804, 2005.        Google Scholar

87. Falkowski, K. and M. Henzel, "High efficiency radial passive magnetic bearing," Solid State Phenomena, Vol. 164, 360-365, 2010.        Google Scholar

88. Lijesh, K. P. and H. Hirani, "Modelling and development of rmd configuration magnetic bearing," Tribology in Industry, Vol. 37, 225-235, 2015.        Google Scholar

89. Bekinal, S. I., S. Jana, and S. S. Kulkarni, "A hybrid (permanent magnet and foil) bearing set for complete passive levitation of high-speed rotors," Proc. IMechE, Part C: J Mechanical Engineering Science, Vol. 231, 3679-3689, 2017.        Google Scholar

90. Lijesh, K. P. and H. Hirani, "Design and development of permanent magneto-hydrodynamic hybrid journal bearing," ASME Journal of Tribology, Vol. 139, No. 4, 044501(1–9), 2017.        Google Scholar