1. Ebrahimi, S. N., "Second-order terahertz bandpass frequency selective surface with miniaturized elements," EEE Transactions on Terahertz Science and Technology, Vol. 5, No. 5, 761-769, Sept. 2015.
doi:10.1109/TTHZ.2015.2452813 Google Scholar
2. Monorchio, A., "A frequency selective radome with wideband absorbing properties," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 6, 2740-2747, Apr. 2012.
doi:10.1109/TAP.2012.2194640 Google Scholar
3. Syed, I. S. and Y. Ranga, "A single-layer frequency-selective surface for ultra-wideband electromagnetic shielding," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 404-1411, Dec. 2014.
doi:10.1109/TEMC.2014.2316288 Google Scholar
4. Abadi, S. M. A. M. H. and N. Behdad, "Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 525-534, Feb. 2016.
doi:10.1109/TAP.2015.2504999 Google Scholar
5. Munk, B. A., P. Munk, and J. Pryor, "On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 186-193, Jan. 2007.
doi:10.1109/TAP.2006.888395 Google Scholar
6. Allen, K. W., D. J. P. Dykes, D. R. Reid, and R. T. Lee, "Multi-Objective genetic algorithm optimization of frequency selective metasurfaces to engineer Ku-passband filter responses," Progress In Electromagnetics Research, Vol. 167, 19-30, 2020. Google Scholar
7. Pelton, E. and B. Munk, "A streamlined metallic radome," IEEE Transactions on Antennas and Propagation, Vol. 22, No. 6, 799-803, 1974.
doi:10.1109/TAP.1974.1140896 Google Scholar
8. Magill, E. and H. Wheeler, "Wide-angle impedance matching of a planar array antenna by a dielectric sheet," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 1, 49-53, 1966.
doi:10.1109/TAP.1966.1138622 Google Scholar
9. Yin, W., H. Zhang, T. Zhong, and Q. Chen, "An outstanding miniaturized frequency selective surface based on convoluted interwoven element," Progress In Electromagnetics Research Letters, Vol. 69, 133-139, 2017.
doi:10.2528/PIERL17060705 Google Scholar
10. Liu, H. L., K. L. Ford, and R. J. Langley, "Design methodology for a miniaturized frequency selective surface using lumped reactive components," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 9, 2732-2738, Jul. 2009.
doi:10.1109/TAP.2009.2027174 Google Scholar
11. Yu, Y.-M., C.-N. Chiu, Y.-P. Chiou, and T.-L. Wu, "A novel 2.5-dimensional ultraminiaturized-element frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 7, 3657-3663, Jul. 2014.
doi:10.1109/TAP.2014.2321153 Google Scholar
12. Yu, Y., Z. Shen, T. Deng, and G. Luo, "3-D frequency-selective absorber with wide upper absorption band," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4363-4367, Aug. 2017.
doi:10.1109/TAP.2017.2712812 Google Scholar
13. Rashid, A. K., B. Li, and Z. Shen, "An overview of three-dimensional frequency-selective structures," IEEE Antennas and Propagation Magazine, Vol. 56, No. 3, 43-67, Jun. 2014.
doi:10.1109/MAP.2014.6867682 Google Scholar
14. Li, B. and Z. Shen, "Dual-band bandpass frequency-selective structures with arbitrary band ratios," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 11, 5504-5512, Nov. 2014.
doi:10.1109/TAP.2014.2349526 Google Scholar
15. Yin, W., H. Zhang, T. Zhong, and X. Min, "Ultra-miniaturized low-profile angularly-stable frequency selective surface design," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 4, 1234-1238, Aug. 2019.
doi:10.1109/TEMC.2018.2881161 Google Scholar