Vol. 104
Latest Volume
All Volumes
PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-08-17
Sub-Domain Analysis of Asymmetrical Magnetic Field in Electrical Machines
By
Progress In Electromagnetics Research C, Vol. 104, 215-228, 2020
Abstract
Beside magnetic equivalent circuit and finite element methods, sub-domain analysis (SDA) is an alternative method, which can be used to evaluate electrical machines behavior. It has a reasonable accuracy, and its parametric nature is allowed to apply to optimization or sensitivity analysis. Commonly this method is based on variables separation technique of Maxwell equations and Fourier series, eigenvalues and eigen-functions are so important for obtaining accurate results. In this paper, Maxwell equations are solved for two adjacent regions, i.e., copper (Cu) and permanent magnet (PM). It was paid less attention before, and it introduces supplementary eigenvalue and eigen function for asymmetry conditions in Cu or PM magnetic field regions.
Citation
Sohrab Amini Velashani, and Jawad Faiz, "Sub-Domain Analysis of Asymmetrical Magnetic Field in Electrical Machines," Progress In Electromagnetics Research C, Vol. 104, 215-228, 2020.
doi:10.2528/PIERC20061805
References

1. Devillers, E., et al., "A review of subdomain modeling techniques in electrical machines: Performances and applications," XXII International Conference on Electrical on Electrical Machines (ICEM), Lausanne, Switzerland, Sep. 4–7, 2016.

2. Roubache, L., K. Boughrara, F. Dubas, and R. Ibtiouen, "Semi-analytical modeling of Spoke-type permanent-magnet machines considering the iron core relative permeability: Subdomain technique and Taylor polynomial," Progress In Electromagnetics Research B, Vol. 77, 85-101, 2017.
doi:10.2528/PIERB17051001

3. Dubas, F. and K. Boughrara, "New scientific contribution on the 2D subdomain technique in Cartesian coordinates: Taking into account of iron parts," Math. Comput. Appl., 2017.

4. Ivrii, V., Partial Differential Equations, Textbook, 2017.

5. Li, J., K. T. Chau, and W. Li, "Harmonic analysis and comparison of permanent magnet vernier and magnetic-geared machines," IEEE Trans. on Magnetics, Vol. 47, No. 10, 3649-3652, 2011.
doi:10.1109/TMAG.2011.2159105

6. Jabbari, A., "Exact analytical modeling of magnetic vector potential in surface inset permanent magnet DC machines considering magnet segmentation," Journal of Electrical Engineering, Vol. 69, No. 1, 39-45, 2018.
doi:10.1515/jee-2018-0005

7. Lubin, T., S. Mezani, and A. Rezzoug, "Two-dimensional analytical calculation of magnetic field and electromagnetic torque for surface-inset permanent-magnet motors," IEEE Trans. on Magnetics, Vol. 48, No. 6, 2080-2091, 2012.
doi:10.1109/TMAG.2011.2180918

8. Jabbari, A., "Analytical modeling of magnetic field distribution in inner rotor brushless magnet segmented surface inset permanent magnet machines," Iranian Journal of Electrical and Electronic Engineering, Vol. 14, No. 3, 259-269, 2018.

9. Thierry, L., S. Mezani, and A. Rezzoug, "2D exact analytical model for surface-mounted permanent-magnet motors with semi-closed slots," IEEE Trans. on Magnetics, Vol. 47, No. 2, 479-492, 2011.
doi:10.1109/TMAG.2010.2095874

10. Ma, F., et al., "Analytical calculation of armature reaction field of the interior permanent magnet motor," Journal of Energies, Vol. 11, No. 9, 1-12, 2018.

11. Jabbari, A. and F. Dubas, "A new subdomain method for performances computation in interior permanent-magnet (IPM) machines," Iranian Journal of Electrical and Electronic Engineering, Vol. 16, No. 1, 26-38, 2020.

12. Hannon, B., P. Sergeant, and L. Dupre, "2-D analytical subdomain model of a slotted PMSM with shielding cylinder," IEEE Trans. on Magnetics, Vol. 50, No. 7, 2014.
doi:10.1109/TMAG.2014.2309325

13. Rahideh, A., H. Moghbelli, and T. Korakianitis, "Two-dimensional analytical magnetic field calculations for doubly-salient machines," IJST Trans. of Electrical Engineering, Vol. 38, No. E1, 33-57, 2014.

14. Ben Yahia, M., K. Boughrara, and F. Dubas, "Two-dimensional exact subdomain technique of switched reluctance machines with sinusoidal current excitation," Math. Comput. Appl., Vol. 23, No. 4, 59, 2018.

15. Djelloul-Khedda, Z. and K. Boughrara, "Nonlinear analytical prediction of magnetic field and electromagnetic performances in switched reluctance machines," IEEE Trans. on Magnetics, Vol. 53, No. 7, 2017.
doi:10.1109/TMAG.2017.2679686

16. Oner, Y., et al., "Analytical on-load sub-domain field model of permanent magnet Vernier machines," IEEE Trans. on Industrial Electronics, Vol. 63, No. 7, 4105-4117, 2016.
doi:10.1109/TIE.2016.2532285

17. Boughrara, K., T. Lubin, and R. Ibtiouen, "General subdomain model for predicting lagnetic field in internal and external rotor multiphase flux-switching machines topologies," IEEE Trans. on Magnetics, Vol. 49, No. 10, 5310-5325, 2013.
doi:10.1109/TMAG.2013.2260827

18. Male, G., et al., "Analytical calculation of the flux density distribution in a superconducting reluctance machine with HTS bulks rotor," Elsevier, Mathematics and Computers in Simulation, Vol. 90, 230-243, 2013.
doi:10.1016/j.matcom.2013.01.003

19. Wu, J., B. Wen, Y. Zhang, and Q. Zhang, "Complete subdomain model for radial-flux slotted PM machines with toroidal windings accounting for the iron-part," IOP Conference Series: Materials Science and Engineering, Vol. 569, No. 3, 032054, 2019.
doi:10.1088/1757-899X/569/3/032054

20. Cheng, D. K., Field and Wave Electromagnetics, Tsinghua University Press, 2006.