Vol. 96
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-27
An Ultra-Thin Non-Resonant Class of Frequency Selective Surface for X Band Applications
By
Progress In Electromagnetics Research M, Vol. 96, 9-20, 2020
Abstract
A new miniaturized and ultra-thin non-resonant element-class of convoluted frequency selective surface (FSS) structure with reduced overall thickness is presented and empirically verified. The proposed FSS structure, which could be capable of providing a first order narrow band pass response for X band applications, is made up of three metallic layers separated from one another by two dielectric substrates. The outer layers are made up of convoluted inductive grids, and the inner layer is a non-resonant structure composed of convoluted square slot array. A first-order band pass response FSS with a centre frequency of 10.5 GHz and fast roll-off characteristics is presented. The overall element thickness of the proposed FSS is λ/56, which is smaller than previously proposed miniaturized structures. The comparison between all patch layers with the proposed structure which is not an all patch layers is explicated in detail with its convoluting effects. The validity of this design procedure is verified with an equivalent circuit model, and a sample is fabricated and measurement done using a WR 90 waveguide setting for experimental verification.
Citation
Vahida Shaik, and Krishnan Shambavi, "An Ultra-Thin Non-Resonant Class of Frequency Selective Surface for X Band Applications," Progress In Electromagnetics Research M, Vol. 96, 9-20, 2020.
doi:10.2528/PIERM20062501
References

1. Wu, G., V. Hansen, H. P. Gemuend, and E. Kreysa, "Multi-layered submillimeter FSS of shifted crossed slot elements for applications in radio astronomy," Proceedings of German Microwave Conference, 2005.

2. Erkmen, F., T. S. Almoneef, and O. M. Ramahi, "Scalable electromagnetic energy harvesting using frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 5, 2433-2441, 2018.
doi:10.1109/TMTT.2018.2804956

3. Kiani, G. I., L. G. Olsson, A. Karlsson, and K. P. Esselle, "Transmission of infrared and visible wavelengths through energy-saving glass due to etching of frequency-selective surfaces," IET Microwaves, Antennas & Propagation, Vol. 4, No. 7, 955-961, 2010.
doi:10.1049/iet-map.2009.0439

4. Sanchez-Escuderos, D., H. C. Moy-Li, E. Antonino-Daviu, M. Cabedo-Fabres, and M. Ferrando- Bataller, "Microwave planar lens antenna designed with a three-layer frequency-selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 904-907, 2016.

5. Bouslama, M., M. Traii, T. A. Denidni, and A. Gharsallah, "Reconfigurable frequency selective surface for beam-switching applications," IET Microwaves, Antennas & Propagation, Vol. 11, No. 1, 69-74, 2017.
doi:10.1049/iet-map.2016.0080

6. Lazaro, A., A. Ramos, D. Girbau, and R. Villarino, "A novel UWB RFID tag using active frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 3, 1155-1165, 2012.
doi:10.1109/TAP.2012.2228838

7. Wu, P., F. Bai, Q. Xue, X. Liu, and S. R. Hui, "Use of frequency-selective surface for suppressing radio-frequency interference from wireless charging pads," IEEE Transactions on Industrial Electronics, Vol. 61, No. 8, 3969-3977, 2013.
doi:10.1109/TIE.2013.2284136

8. Li, M. and N. Behdad, "Frequency selective surfaces for pulsed high-power microwave applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 677-687, 2012.
doi:10.1109/TAP.2012.2225133

9. Li, L., J. Wang, J. Wang, H. Ma, H. Du, J. Zhang, and Z. Xu, "Reconfigurable all-dielectric meta material frequency selective surface based on high-permittivity ceramics," Scientific Reports, Vol. 6, 24178, 2012.

10. Sheng, X. J., J. J. Fan, N. Liu, and C. B. Zhang, "A miniaturized dual-band FSS with controllable frequency resonances," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 10, 915-917, 2017.
doi:10.1109/LMWC.2017.2746680

11. Sheng, X., J. Fan, N. Liu, and C. Zhang, "A dual-band fractal FSS with SZ curve elements," IEICE Electronics Express, Vol. 14, 20170518, 2017.
doi:10.1587/elex.14.20170518

12. Sarabandi, K. and N. Behdad, "A frequency selective surface with miniaturized elements," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 5, 1239-1245, 2007.
doi:10.1109/TAP.2007.895567

13. Al-Joumayly, M. and N. Behdad, "A new technique for design of low-profile, second-order, bandpass frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 2, 452-459, 2009.
doi:10.1109/TAP.2008.2011382

14. Abadi, S. M. A. M. H. and N. Behdad, "Inductively-coupled miniaturized-element frequency selective surfaces with narrowband, high-order bandpass responses," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4766-4774, 2015.
doi:10.1109/TAP.2015.2477850

15. Hussein, M., J. Zhou, Y. Huang, and B. Al-Juboori, "A low-profile miniaturized second-order bandpass frequency selective surface," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2791-2794, 2017.

16. Gao, M., S. M. A. M. H. Abadi, and N. Behdad, "A hybrid miniaturized-element frequency selective surface with a third-order bandpassresponse," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 708-711, 2016.
doi:10.1109/TAP.2015.2511779

17. Abadi, S. M. A. M. H. and N. Behdad, "Wideband linear-to-circular polarization converters based on miniaturized-element frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 2, 525-534, 2015.
doi:10.1109/TAP.2015.2504999

18. Taghizadeh, M. and M. Maddahali, "New class of frequency selective surface based on non-resonant elements with high stability," IET Microwaves, Antennas & Propagation, Vol. 12, No. 3, 406-4409, 2018.
doi:10.1049/iet-map.2017.0065

19. Yin, W., H. Zhang, T. Zhong, and X. Min, "Ultra-miniaturized low-profile angularly-stable frequency selective surface design," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 4, 1234-1238, 2018.
doi:10.1109/TEMC.2018.2881161

20. Yu, Z., X. Yang, J. Zhu, C. Wang, Y. Shi, and W. Tang, "Dual-band three-dimensional FSS with high selectivity and small band ratio," Electronics Letters, Vol. 55, No. 14, 798-799, 2019.
doi:10.1049/el.2019.1283

21. Zhao, P. C., Z. Y. Zong, W. Wu, B. Li, and D. G. Fang, "Miniaturized-element bandpass FSS by loading capacitive structures," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3539-3544, 2019.
doi:10.1109/TAP.2019.2900408

22. Marcuvitz, N., Waveguide Handbook, Boston Technical Publishers, Lexington, MA, 1964.