Vol. 95
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-12-15
Accurate Vortex Beam Mode Measurement Based on Rotational Antenna Method
By
Progress In Electromagnetics Research Letters, Vol. 95, 55-61, 2021
Abstract
For the application of electro-magnetic (EM) wave with orbital angular momentum (OAM), which is also called the vortex beam, it is essential to determine the real OAM mode of the transmit antenna, i.e., accurately measure the OAM mode of the manufactured antenna with systematic error. The traditional methods measure the OAM mode based on the OAM far-field approximation or the phase gradient in the transverse plane. The corresponding performance degrades when alignment error is not negligible or OAM modes increases. In this paper, an accurate OAM measurement of EM wave based on rotational antenna is proposed. Specifically, the EM beam with helical phase fronts can be well measured via frequency shift detection by rotating the OAM wave at the transmitter. The accuracy can be greatly improved compared with the traditional ways.
Citation
Yuming Nie, Gaohua Ju, Jiarun Chen, Lu Ma, and Yufei Zhao, "Accurate Vortex Beam Mode Measurement Based on Rotational Antenna Method," Progress In Electromagnetics Research Letters, Vol. 95, 55-61, 2021.
doi:10.2528/PIERL20062805
References

1. Allen, L., M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, "Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes," Phys. Rev., Vol. A45, 8185, 1992.
doi:10.1103/PhysRevA.45.8185

2. Mair, A., A. Vaziri, G. Weihs, and A. Zeilinger, "Entanglement of the orbital angular momentum states of photons," Nature, Vol. 412, No. 313, 2001.

3. Grier, D. G., "A revolution in optical manipulation," Nature, Vol. 424, No. 810, 2003.

4. Arshad, K., Aman-ur-Rehman, and S. Mahmood, "Kinetic study of ion acoustic twisted waves with kappa distributed electrons," Phys. Plasmas, Vol. 23, No. 052107, 2016.

5. Arshad, K., M. Lazar, S. Mahmood, Aman-ur-Rehman, and S. Poedts, "Kinetic study of electrostatic twisted waves instability in nonthermal dusty plasmas," Physics of Plasmas, Vol. 24, No. 033701, 2017.

6. Arshad, K., M. Lazar, and S. Poedts, "Quasi-electrostatic twisted waves in Lorentzian dusty plasmas," Planetary and Space Science, Vol. 156, 139-146, 2018.
doi:10.1016/j.pss.2017.10.013

7. Thide, B., H. Then, J. Sjoholm, K. Palmer, J. Bergman, T. D. Carozzi, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Phys. Rev. Lett., Vol. 99, No. 087701, 2007.

8. Mahmouli, F. E. and S. D. Walker, "4-Gbps uncompressed video transmission over a 60-GHz orbital angular momentum wireless channel," IEEE Wireless Communications Letters, Vol. 2, No. 2, 223-226, 2013.
doi:10.1109/WCL.2013.012513.120686

9. Hui, X., S. Zheng, Y. Hu, C. Xu, X. Jin, H. Chi, and X. Zhang, "Ultralow reflectivity spiral phase plate for generation of millimeter-wave OAM beam," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 966-969, 2015.
doi:10.1109/LAWP.2014.2387431

10. Mohammadi, S. M., L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, and B. Isham, "Orbital angular momentum in radio — A system study," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

11. Mohammadi, S. M., L. K. Daldorff, K. Forozesh, B. Thide, J. E. Bergman, B. Isham, and T. D. Carozzi, "Orbital angular momentum in radio: Measurement methods," Radio Science, Vol. 45, No. RS4007, 2010.

12. Zhang, C. and L. Ma, "Millimetre wave with rotational orbital angular momentum," Sci. Rep., Vol. 6, No. 31921, 2016.

13. Andrews, D. L. and M. Babiker, The Angular Momentum of Light, 115-125, Cambridge University Press, 2012.
doi:10.1017/CBO9780511795213

14. Turnbull, G. A., D. A. Robertson, G. M. Smith, L. Allen, and M. J. Padgett, "The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate," Optics Comm., Vol. 127, 183-188, 1996.
doi:10.1016/0030-4018(96)00070-3