Vol. 94
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-11-06
Compact d -CRLH Structure for Filtering Power Divider
By
Progress In Electromagnetics Research Letters, Vol. 94, 93-101, 2020
Abstract
This research work introduces a compact dual composite right/left handed (D-CRLH) unit cell structure for filtering power divider (FPD) application. The D-CRLH unit-cell consists of an interdigital capacitor with two shorted fingers in series. It contains a meander line, a rectangular stub, and a via in shunt, both series and shunt elements provide filtering response as a bandpass filter. This design has been developed on dielectric material of thickness 1.6 mm, usually called as Epoxy glass substrate (FR-4). The transmission line of length λg/4 of a Wilkinson power divider has been replaced with a D-CRLH unit cell to reduce the size of proposed structure more than 60%. Another advantage of using a D-CRLH structure is the position of resonance frequency independently controlled by series parameter only because of shorted structure. The series chip resistor has been utilized to improve the isolation at resonance in between output ports. It offers miniaturization with electrical footprint area of 0.15λg x 0.27λg (11.4 mm x 20.4 mm), here λg represents the guided wavelength at resonance frequency of 2.5 GHz.
Citation
Dilip Kumar Choudhary, and Raghvendra Kumar Chaudhary, "Compact d -CRLH Structure for Filtering Power Divider," Progress In Electromagnetics Research Letters, Vol. 94, 93-101, 2020.
doi:10.2528/PIERL20071504
References

1. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, Wiley, USA, 2006.

2. Choudhary, D. K. and R. K. Chaudhary, "A Compact Coplanar Waveguide (CPW)-fed zeroth-order resonant filter for bandpass applications," Frequenz Journal of RF-Engineering and Telecommunications, Vol. 71, 305-310, De Gruyter, 2017.

3. Ramachandran, T., M. R. I. Faruque, and M. T. Islam, "A dual band left-handed metamaterial-enabled design for satellite applications," Results in Physics, Vol. 16, 102942, 2020.
doi:10.1016/j.rinp.2020.102942

4. Choudhary, D. K., M. A. Abdalla, and R. K. Chaudhary, "Compact D-CRLH resonator for low pass filter with wide rejection band, high roll-off and transmission zeros," International Journal of Microwave and Wireless Technologies, Vol. 11, No. 5–6, 509-516, Cambridge Press, 2019.
doi:10.1017/S175907871800140X

5. Caloz, C. and N. V. Nguyen, "Novel broadband Conventional and Dual-Composite Right/Left-handed (C/D-CRLH) metamaterials: Properties, implementation and double-band coupler application," Applied Physics A, Vol. 87, 309-316, 2007.
doi:10.1007/s00339-006-3839-y

6. Song, K., "Compact filtering power divider with high frequency selectivity and wide stopband using embedded dual-mode resonator," Electronics Letters, Vol. 51, 495-497, 2015.
doi:10.1049/el.2014.4165

7. Moradi, E., A. R. Mozenbi, K. Afrooza, and M. Movahhedi, "Gysel power divider with efficient second and third harmonic suppression using one resistor," International Journal of Electronics and Communications (AEU), Vol. 89, 116-122, 2018.
doi:10.1016/j.aeue.2018.03.011

8. Wang, X., J. Wang, and G. Zhang, "Design of wideband filtering power divider with high selectivity and good isolation," Electronics Letters, Vol. 52, 1389-1391, 2016.
doi:10.1049/el.2016.2065

9. Chau, W. M., K. W. Hsu, and W. H. Tu, "Filter-based Wilkinson power divider," IEEE Microwave and Wireless Components Letters, Vol. 24, 239-241, 2014.
doi:10.1109/LMWC.2014.2299543

10. Chen, C. F., T. Y. Huang, T. M. Shen, and R. B. Wu, "Design of miniaturized filtering power dividers for system-in-a-package," IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 3, 1663-1672, 2013.
doi:10.1109/TCPMT.2013.2254488

11. Chau, W. M., K. W. Hsu, and W. H. Tu, "Wide stopband Wilkinson power divider with bandpass response," Electronics Letters, Vol. 51, 1950-1952, 2014.

12. Chen, C. J. and Z. C. Ho, "Design equations for a coupled-line type filtering power divider," IEEE Microwave and Wireless Components Letters, Vol. 27, 257-259, 2017.
doi:10.1109/LMWC.2017.2661968

13. Li, Q., Y. Zhang, and C. T. M. Wu, "High-selectivity and miniaturized filtering Wilkinson power dividers integrated with multimode resonators," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 99, 1-8, 2017.

14. Li, Y. C., Q. Xue, and X. Y. Zhang, "Single- and dual-band power dividers Integrated with bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, 69-76, 2013.
doi:10.1109/TMTT.2012.2226600

15. Chen, C. F., T. Y. Huang, T. M. Shen, and R. B. Wu, "Design of miniaturized filtering power dividers for system-in-a-package," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 3, 1663-1672, 2013.
doi:10.1109/TCPMT.2013.2254488

16. Rostami, P. and S. Roshani, "A miniaturized dual band Wilkinson power divider using capacitor loaded transmission lines," International Journal of Electronics and Communications (AEU), Vol. 90, 63-68, 2018.
doi:10.1016/j.aeue.2018.04.014

17. Tang, C., X. Lin, Y. Fan, and K. Song, "A wideband power divider with bandpass response," International Journal of Microwave and Wireless Technologies, Vol. 8, 83-90, 2016.

18. Zhang, P., X. Lin, C. Tang, Y. Jiang, and Y. Fan, "Wideband filtering power divider with deep and wide stopband," International Journal of Microwave and Wireless Technologies, Vol. 10, 1011-1018, 2018.
doi:10.1017/S1759078718000946

19. Daw, A. F., M. A. Abdalla, and H. M. E. Hennawy, "Dual-band divider has rejection band at 5 GHz," Microwaves and RF Magazine, 1-6, 2016.

20. Deng, Y., J. Wang, and J. L. Li, "Design of compact wideband filtering power divider with extended isolation and rejection bandwidth," Electronics Letters, Vol. 52, 1387-1389, 2016.
doi:10.1049/el.2016.0951

21. Choudhary, D. K. and R. K. Chaudhary, "A compact CPW-based dual-band filter using modified complementary splitring resonator," International Journal of Electronics and Communications (AEU), Vol. 89, 110-115, 2018.
doi:10.1016/j.aeue.2018.03.032

22. Eom, D., S. Kahng, B. Lee, C. Woo, and H. Lee, "Wide-band power divider miniaturized by combining CRLH ZOR bandpass filters," Asia Pacific Microwave Conference Proceedings, 541-543, 2012.

23. Choudhary, D. K. and R. K. Chaudhary, "Compact metamaterial inspired structure with bandpass characteristics for penta-band applications using virtual ground concept," Microwave and Optical Techonology Letters, Vol. 61, 2628-2634, 2019.
doi:10.1002/mop.31942

24. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

25. Bahl, I., Lumped Elements for RF and Microwave Circuits, Artech House, Norwood, USA, 2003.