1. Haboubi, W., H. Takhedmit, J.-D. Lan Sun Luk, S.-E. Adami, B. Allard, F. Costa, C. Vollaire, O. Picon, and L. Cirio, "An efficient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band," Progress In Electromagnetics Research, Vol. 148, 31-39, 2014.
doi:10.2528/PIER14031103 Google Scholar
2. Sakamoto, T., Y. Ushijima, E. Nishiyama, M. Aikawa, and I. Toyoda, "5.8-GHz series/parallel connected rectenna array using expandable differential rectenna units," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4872-4875, 2013.
doi:10.1109/TAP.2013.2266316 Google Scholar
3. Huang, K. and V. K. N. Lau, "Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment," IEEE Transactions on Wireless Communications, Vol. 13, No. 2, 902-912, 2014.
doi:10.1109/TWC.2013.122313.130727 Google Scholar
4. Xu, D. and Q. Li, "Joint power control and time allocation for wireless powered underlay cognitive radio networks," IEEE Transactions on Wireless Communications, Vol. 6, No. 3, 294-297, 2017.
doi:10.1109/LWC.2017.2676102 Google Scholar
5. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833 Google Scholar
6. Liou, C., C. Kuo, and S. Mao, "Wireless-power-transfer system using near-field capacitively coupled resonators," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63, No. 9, 898-902, 2016.
doi:10.1109/TCSII.2016.2535042 Google Scholar
7. Lai, C., et al., "Highly efficient microwave power system of magnetrons utilizing frequency-searching injection-locking technique with no phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 898-902, 2020. Google Scholar
8. Strassner, B. and K. Chang, "Microwave power transmission: Historical milestones and system components," Proceedings of the IEEE, Vol. 101, No. 6, 1379-1396, 2013.
doi:10.1109/JPROC.2013.2246132 Google Scholar
9. Kim, Y., H. S. Bhamra, J. Joseph, and P. P. Irazoqui, "An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 62, No. 11, 1028-1032, 2015.
doi:10.1109/TCSII.2015.2456511 Google Scholar
10. Varshney, L. R., "Transporting information and energy simultaneously," 2008 IEEE International Symposium on Information Theory, No. 6, 1612-1616, 2008.
doi:10.1109/ISIT.2008.4595260 Google Scholar
11. Huang, F., C. Lee, C. Chang, L. Chen, T. Yo, and C. Luo, "Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2646-2653, 2011.
doi:10.1109/TAP.2011.2152317 Google Scholar
12. Li, W., Z. Xia, B. You, Y. Liu, and Q. H. Liu, "Dual-polarized H-shaped printed slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1484-1487, 2017.
doi:10.1109/LAWP.2016.2646805 Google Scholar
13. Tan, M. and B. Wang, "A compact dual-band dual-polarized loop-slot planar antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1742-1745, 2015.
doi:10.1109/LAWP.2015.2421731 Google Scholar
14. Yang, X., C. Jiang, A. Z. Elsherbeni, F. Yang, and Y. Wang, "A novel compact printed rectenna for data communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2532-2539, 2013.
doi:10.1109/TAP.2013.2244550 Google Scholar
15. Riviere, J., A. Douyere, S. Oree, and J.-D. Lan Sun Luk, "An ISM band conventional CPW rectenna for low power levels," Progress In Electromagnetics Research C, Vol. 77, 101-110, 2017.
doi:10.2528/PIERC17070401 Google Scholar
16. Kharrat, I., P. Xavier, T.-P. Vuong, and G. E. P. Tourtollet, "Compact rectenna design for lossy paper substrate at 2.45 GHz," Progress In Electromagnetics Research C, Vol. 62, 61-70, 2016.
doi:10.2528/PIERC15093005 Google Scholar
17. Monti, G., L. Corchia, and L. Tarricone, "ISM band rectenna using a ring loaded monopole," Progress In Electromagnetics Research C, Vol. 33, 1-15, 2012.
doi:10.2528/PIERC12082813 Google Scholar
18. Ur Rehman, M., W. Ahmad, and W. T. Khan, "Single- and dual-band RF rectifiers with extended input power range using automatic impedance transforming," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, No. 5, 1974-1984, 2019. Google Scholar
19. Liu, Z., Z. Zhong, and Y. Guo, "Enhanced dual-band ambient RF energy harvesting with ultra-wide power range," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 9, 630-632, 2015.
doi:10.1109/LMWC.2015.2451397 Google Scholar
20. Takhedmit, H., Z. Saddi, and L. Cirio, "A high-performance circularly-polarized rectenna for wireless energy harvesting at 1.85 and 2.45 GHz frequency bands," Progress In Electromagnetics Research C, Vol. 79, 89-100, 2017.
doi:10.2528/PIERC17070706 Google Scholar
21. Li, C., M. Yu, and H. Lin, "A compact 0.9-/2.6-GHz dual-band RF energy harvester using SiP technique," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 666-668, 2017.
doi:10.1109/LMWC.2017.2711506 Google Scholar
22. Niotaki, K., A. Georgiadis, A. Collado, and J. S. Vardakas, "Dual-band resistance compression networks for improved rectifier performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 3512-3521, 2014.
doi:10.1109/TMTT.2014.2364830 Google Scholar
23. Bhatt, K., S. Kumar, P. Kumar, and C. C. Tripathi, "Highly efficient 2.4 and 5.8GHz dual-band rectenna for energy harvesting applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2637-2641, 2019.
doi:10.1109/LAWP.2019.2946911 Google Scholar