Vol. 96
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-02
Dual-Band Rectenna for Wireless Information and Power Transmission of WLAN Applications
By
Progress In Electromagnetics Research M, Vol. 96, 45-54, 2020
Abstract
A dual-band microstrip rectenna for wireless local area network (WLAN) applications is presented. It consists of a dual-band dual-polarized receiving antenna and a dual-band high efficiency rectifier. The receiving antenna includes a circular loop, a coplanar waveguide (CPW), and a microstrip line. To minimize mutual interference and ensure high isolation of more than 20 dB between the dual-polarized ports, a CPW is used to produce vertical polarization modes and the horizontal polarization modes is fed by a microstrip line. The horizontal excitation port is used for information receiving, while the vertical feeding port transfers enough wireless energy for rectifying. A co-simulation of HFSS and ADS is used for analysing the performance of rectenna. Measured results show that it has the -10 dB reflection coefficient bandwidths of 510 MHz (2.39-3.09 GHz) and 920 MHz (5.16-6.08 GHz) for rectifying Port 1, where the isolation between the ports is higher than 25 dB, and the cross polarization is less than -15 dB in two bands. The maximum microwave-direct current (mw-dc) conversion efficiencies of 67.7% and 57.03% at 2.45 GHz and 5.8 GHz are achieved with a 300 Ω load and 16 dBm receiving power.
Citation
Ju Huang, Shixing Yu, Na Kou, Zhao Ding, and Zhengping Zhang, "Dual-Band Rectenna for Wireless Information and Power Transmission of WLAN Applications," Progress In Electromagnetics Research M, Vol. 96, 45-54, 2020.
doi:10.2528/PIERM20072703
References

1. Haboubi, W., H. Takhedmit, J.-D. Lan Sun Luk, S.-E. Adami, B. Allard, F. Costa, C. Vollaire, O. Picon, and L. Cirio, "An efficient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band," Progress In Electromagnetics Research, Vol. 148, 31-39, 2014.
doi:10.2528/PIER14031103

2. Sakamoto, T., Y. Ushijima, E. Nishiyama, M. Aikawa, and I. Toyoda, "5.8-GHz series/parallel connected rectenna array using expandable differential rectenna units," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4872-4875, 2013.
doi:10.1109/TAP.2013.2266316

3. Huang, K. and V. K. N. Lau, "Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment," IEEE Transactions on Wireless Communications, Vol. 13, No. 2, 902-912, 2014.
doi:10.1109/TWC.2013.122313.130727

4. Xu, D. and Q. Li, "Joint power control and time allocation for wireless powered underlay cognitive radio networks," IEEE Transactions on Wireless Communications, Vol. 6, No. 3, 294-297, 2017.
doi:10.1109/LWC.2017.2676102

5. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833

6. Liou, C., C. Kuo, and S. Mao, "Wireless-power-transfer system using near-field capacitively coupled resonators," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63, No. 9, 898-902, 2016.
doi:10.1109/TCSII.2016.2535042

7. Lai, C., et al., "Highly efficient microwave power system of magnetrons utilizing frequency-searching injection-locking technique with no phase shifter," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 9, 898-902, 2020.

8. Strassner, B. and K. Chang, "Microwave power transmission: Historical milestones and system components," Proceedings of the IEEE, Vol. 101, No. 6, 1379-1396, 2013.
doi:10.1109/JPROC.2013.2246132

9. Kim, Y., H. S. Bhamra, J. Joseph, and P. P. Irazoqui, "An ultra-low-power RF energy-harvesting transceiver for multiple-node sensor application," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 62, No. 11, 1028-1032, 2015.
doi:10.1109/TCSII.2015.2456511

10. Varshney, L. R., "Transporting information and energy simultaneously," 2008 IEEE International Symposium on Information Theory, No. 6, 1612-1616, 2008.
doi:10.1109/ISIT.2008.4595260

11. Huang, F., C. Lee, C. Chang, L. Chen, T. Yo, and C. Luo, "Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2646-2653, 2011.
doi:10.1109/TAP.2011.2152317

12. Li, W., Z. Xia, B. You, Y. Liu, and Q. H. Liu, "Dual-polarized H-shaped printed slot antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1484-1487, 2017.
doi:10.1109/LAWP.2016.2646805

13. Tan, M. and B. Wang, "A compact dual-band dual-polarized loop-slot planar antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1742-1745, 2015.
doi:10.1109/LAWP.2015.2421731

14. Yang, X., C. Jiang, A. Z. Elsherbeni, F. Yang, and Y. Wang, "A novel compact printed rectenna for data communication systems," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2532-2539, 2013.
doi:10.1109/TAP.2013.2244550

15. Riviere, J., A. Douyere, S. Oree, and J.-D. Lan Sun Luk, "An ISM band conventional CPW rectenna for low power levels," Progress In Electromagnetics Research C, Vol. 77, 101-110, 2017.
doi:10.2528/PIERC17070401

16. Kharrat, I., P. Xavier, T.-P. Vuong, and G. E. P. Tourtollet, "Compact rectenna design for lossy paper substrate at 2.45 GHz," Progress In Electromagnetics Research C, Vol. 62, 61-70, 2016.
doi:10.2528/PIERC15093005

17. Monti, G., L. Corchia, and L. Tarricone, "ISM band rectenna using a ring loaded monopole," Progress In Electromagnetics Research C, Vol. 33, 1-15, 2012.
doi:10.2528/PIERC12082813

18. Ur Rehman, M., W. Ahmad, and W. T. Khan, "Single- and dual-band RF rectifiers with extended input power range using automatic impedance transforming," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, No. 5, 1974-1984, 2019.

19. Liu, Z., Z. Zhong, and Y. Guo, "Enhanced dual-band ambient RF energy harvesting with ultra-wide power range," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 9, 630-632, 2015.
doi:10.1109/LMWC.2015.2451397

20. Takhedmit, H., Z. Saddi, and L. Cirio, "A high-performance circularly-polarized rectenna for wireless energy harvesting at 1.85 and 2.45 GHz frequency bands," Progress In Electromagnetics Research C, Vol. 79, 89-100, 2017.
doi:10.2528/PIERC17070706

21. Li, C., M. Yu, and H. Lin, "A compact 0.9-/2.6-GHz dual-band RF energy harvester using SiP technique," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 7, 666-668, 2017.
doi:10.1109/LMWC.2017.2711506

22. Niotaki, K., A. Georgiadis, A. Collado, and J. S. Vardakas, "Dual-band resistance compression networks for improved rectifier performance," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 12, 3512-3521, 2014.
doi:10.1109/TMTT.2014.2364830

23. Bhatt, K., S. Kumar, P. Kumar, and C. C. Tripathi, "Highly efficient 2.4 and 5.8GHz dual-band rectenna for energy harvesting applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 12, 2637-2641, 2019.
doi:10.1109/LAWP.2019.2946911