1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s Equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Jensen, M. A. and Y. Rahmat-Samii, "Performance analysis of antennas for hand-held transceivers using FDTD," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 8, 1106-1113, 1994.
doi:10.1109/8.310002 Google Scholar
3. Orjubin, G., F. Petit, E. Richalot, S. Mengue, and O. Picon, "Cavity losses modeling using lossless FDTD method," IEEE Transactions on Electromagnetic Compatibility, Vol. 48, No. 2, 429-431, 2006.
doi:10.1109/TEMC.2006.873854 Google Scholar
4. Ziolkowski, R. W., "The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 375-391, 1997.
doi:10.1109/8.558653 Google Scholar
5. Wang, X., W. Yin, Y. Yu, Z. Chen, J. Wang, and Y. Guo, "A Convolutional Perfect Matched Layer (CPML) for one-step leapfrog ADI-FDTD method and its applications to EMC problems," IEEE Transactions on Electromagnetic Compatibility, Vol. 54, No. 5, 1066-1076, 2012.
doi:10.1109/TEMC.2012.2198067 Google Scholar
6. Mukherjee, B. and D. K. Vishwakarma, "Application of finite difference time domain to calculate the transmission coefficient of an electromagnetic wave impinging perpendicularly on a dielectric interface with modified MUR-I ABC," Defence Science Journal, Vol. 62, 228-235, 2012.
doi:10.14429/dsj.62.792 Google Scholar
7. Sypek, P., A. Dziekonski, and M. Mrozowski, "How to render FDTD computations more effective using a graphics accelerator," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1324-1327, 2009.
doi:10.1109/TMAG.2009.2012614 Google Scholar
8. Zygiridis, T. T., "High-order error-optimized FDTD algorithm with GPU implementation," IEEE Transactions on Magnetics, Vol. 49, No. 5, 1809-1812, 2013.
doi:10.1109/TMAG.2013.2241410 Google Scholar
9. Cicuttin, M., L. Codecasa, B. Kapidani, R. Specogna, and F. Trevisan, "GPU accelerated time-domain discrete geometric approach method for Maxwell’s Equations on tetrahedral grids," IEEE Transactions on Magnetics, Vol. 54, No. 3, 1-4, 2018.
doi:10.1109/TMAG.2017.2753322 Google Scholar
10. Livesey, M., J. F. Stack, F. Costen, T. Nanri, N. Nakashima, and S. Fujino, "Development of a CUDA implementation of the 3D FDTD method," IEEE Antennas and Propagation Magazine, Vol. 54, No. 5, 186-195, 2012.
doi:10.1109/MAP.2012.6348145 Google Scholar
11. Jia, C., L. Guo, and P. Yang, "EM scattering from a target above a 1-D randomly rough sea surface using GPU-based parallel FDTD ," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 217-220, 2015.
doi:10.1109/LAWP.2014.2360415 Google Scholar
12. Lee, K. H., I. Ahmed, R. S.M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11042002 Google Scholar
13. Ghouwayel, A. A. and Y. Louet, "FPGA implementation of a re-configurable FFT for multi-standard systems in software radio context," IEEE Transactions on Consumer Electronics, Vol. 55, No. 2, 950-958, 2009.
doi:10.1109/TCE.2009.5174479 Google Scholar
14. Ingemarsson, C., P. Källström, F. Qureshi, and O. Gustafsson, "Efficient FPGA mapping of pipeline SDF FFT cores," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 25, No. 9, 2486-2497, 2017.
doi:10.1109/TVLSI.2017.2710479 Google Scholar
15. Choi, S., et al. "Design of FPGA-based LZ77 compressor with runtime configurable compression ratio and throughput," IEEE Access, Vol. 7, 149583-149594, 2019.
doi:10.1109/ACCESS.2019.2947273 Google Scholar
16. Li, B., L. Zhang, Z. Shang, and Q. Dong, "Implementation of LZMA compression algorithm on FPGA," Electronics Letters, Vol. 50, No. 21, 1522-1524, 2014.
doi:10.1049/el.2014.1734 Google Scholar
17. Nguyen, D. T., T. N. Nguyen, H. Kim, and H. Lee, "A high-throughput and power-efficient FPGA implementation of YOLO CNN for object detection," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 27, No. 8, 1861-1873, 2019.
doi:10.1109/TVLSI.2019.2905242 Google Scholar
18. Guo, K., et al. "Angel-eye: A complete design flow for mapping CNN onto embedded FPGA," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 37, No. 1, 35-47, 2018.
doi:10.1109/TCAD.2017.2705069 Google Scholar
19. Fujita, Y. and H. Kawaguchi, "Full-custom PCB implementation of the FDTD/FIT dedicated computer," IEEE Transactions on Magnetics, Vol. 45, No. 3, 1100-1103, 2009.
doi:10.1109/TMAG.2009.2012633 Google Scholar
20. Okina, K., R. Soejima, K. Fukumoto, Y. Shibata, and K. Oguri, "Power performance profiling of 3-D stencil computation on an FPGA accelerator for efficient pipeline optimization," SIGARCH Comput. Archit. News, Vol. 43, No. 4, 9-14, 2015.
doi:10.1145/2927964.2927967 Google Scholar
21. Sano, K., Y. Hatsuda, and S. Yamamoto, "Multi-FPGA accelerator for scalable stencil computation with constant memory bandwidth," IEEE Transactions on Parallel and Distributed Systems, Vol. 25, No. 3, 695-705, 2014.
doi:10.1109/TPDS.2013.51 Google Scholar
22. Kawaguchi, H. and S. Matsuoka, "Conceptual design of 3-D FDTD dedicated computer with dataflow architecture for high performance microwave simulation," IEEE Transactions on Magnetics, Vol. 51, No. 3, Art No. 7202404, 2015. Google Scholar
23. Kawaguchi, H., "Improved architecture of FDTD dataflow machine for higher performance electromagnetic wave simulation," IEEE Transactions on Magnetics, Vol. 52, No. 3, Art No. 7206604, 2016. Google Scholar
24. Waidyasooriya, H. M., Y. Takei, S. Tatsumi, and M. Hariyama, "Open CL-based FPGA-platform for stencil computation and its optimization methodology," IEEE Transactions on Parallel and Distributed Systems, Vol. 28, No. 5, 1390-1402, 2017.
doi:10.1109/TPDS.2016.2614981 Google Scholar
25. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microw. Opt. Technol. Lett., Vol. 27, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
26. Giefers, H., C. Plessl, and J. Förstner, "Accelerating finite difference time domain simulations with reconfigurable dataflow computers," SIGARCH Comput. Archit. News, Vol. 41, No. 5, 65-70, 2014.
doi:10.1145/2641361.2641372 Google Scholar
27. Toivanen, I., T. P. Stefanski, N. Kuster, and N. Chavanne, "Comparison of CPML implementations for the GPU-accelerated FDTD solver," Progress In Electromagnetics Research B, Vol. 19, 61-75, 2011.
doi:10.2528/PIERM11061002 Google Scholar