1. Bogosanovich, M., "Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials," IEEE Trans. Instrum. Meas., Vol. 49, 1144-1148, 2000.
doi:10.1109/19.872944 Google Scholar
2. Verma, A. K., Nasimuddin, and A. S. Omar, "Microstrip resonator sensors for determination of complex permittivity of materials in sheet, liquid and paste forms," Proc. Ins. Elect. Eng., Vol. 152, 47-54, 2005. Google Scholar
3. Zucchelli, A., M. Chimenti, E. Bozzi, and P. Nepa, "Application of a coaxial-fed patch to microwave non-destructive porosity measurements in low-loss dielectrics," Progress In Electromagnetics Research M, Vol. 5, 1-14, 2008.
doi:10.2528/PIERM08100302 Google Scholar
4. Biswas, M. and M. Dam, "CAD oriented improved cavity model to investigate a 30˚-60˚-90˚ right angled triangular patch antenna on single, composite and suspended substrate for the application in portable wireless equipments," IET Microw. Antennas Propagat., Vol. 12, No. 3, 425-434, 2018.
doi:10.1049/iet-map.2017.0721 Google Scholar
5. Biswas, M. and M. Sen, "Design and development of rectangular patch antenna with superstrates for the application in portable wireless equipments and aircraft radome," Microw. Opt. Tech. Lett., Vol. 56, 883-893, 2014.
doi:10.1002/mop.28197 Google Scholar
6. Li, Y. and N. Bowler, "Resonant frequency of a rectangular patch sensor covered with multilayered dielectric structures," IEEE Trans. Antennas Propagat., Vol. 58, 1883-1889, 2010. Google Scholar
7. Bahl, J., P. Bhartia, and S. Stuchly, "Design of microstrip antennas covered with a dielectric layer," IEEE Trans. Antennas Propagat., Vol. 30, 314-318, 1982.
doi:10.1109/TAP.1982.1142766 Google Scholar
8. Verma, A. K., "Analysis of rectangular patch antenna with dielectric cover," IEICE Trans., Vol. 74, 1270-1275, 1991. Google Scholar
9. Benalla, A. and K. C. Gupta, "Multiport network model for rectangular microstrip patches covered with a dielectric layer," IEE Proc., Vol. 137, 377-383, 1990. Google Scholar
10. Qasim, G. and S. Zhong, "Resonant frequency of a rectangular microstrip antenna covered with dielectric layer," J. Shanghai Univ. of Sci. & Tech., Vol. 14, 77-84, 1991. Google Scholar
11. Nelson, R. M., D. A. Rogers, and A. G. D'Assuncio, "Resonant frequency of a rectangular microstrip patch on several uniaxial substrates," IEEE Trans. Antennas Propagat., Vol. 38, 978-981, 1990. Google Scholar
12. Pribetich, J., "Modelling of microstrip antenna with dielectric protective layer for lossy medium," Electron Lett., Vol. 24, 1464-1465, 1988.
doi:10.1049/el:19881000 Google Scholar
13. Svacina, J., "Analysis of multilayer microstrip lines by a conformal mapping method," IEEE Trans. Microw. Theory Tech., Vol. 40, 769-772, 1992.
doi:10.1109/22.127530 Google Scholar
14. Svacina, J., "A simple quasi-static determination of basic parameters of multilayer microstrip and coplanar waveguide," IEEE Microw. Guided Wave Lett., Vol. 2, 385-387, 1992.
doi:10.1109/75.160115 Google Scholar
15. Zhong, S.-S., G. Liu, and G. Qasim, "Closed form expressions for resonant frequency of rectangular patch antennas with multidielectric layers," IEEE Trans. Antennas and Propagat., Vol. 42, 1360-1363, 1994.
doi:10.1109/8.318667 Google Scholar
16. Biswas, M., S. Banik, M. Biswas, and A. Sukla, "CAD model to predict the effect of radome on the characteristics of rectangular patch antenna," Microw. Opt. Tech. Lett., Vol. 55, 2460-2468, 2013.
doi:10.1002/mop.27809 Google Scholar
17. Bernhard, J. T. and C. J. Tousignant, "Resonant frequencies of rectangular microstrip antennas with flush and spaced dielectric superstrates," IEEE Trans. Antennas Propagat., Vol. 47, 302-308, 1999.
doi:10.1109/8.761070 Google Scholar
18. Biswas, M. and A. Mandal, "Experimental and theoretical investigation of resonance and radiation characteristics of superstrate loaded rectangular patch antenna," Microw. Opt. Tech. Lett., Vol. 57, 791-799, 2014. Google Scholar
19. Biswas, M. and D. Guha, "Input impedance and resonance characteristic of superstrate loaded triangular microstrip patch," IET Microw. Antennas Propagat., Vol. 3, 92-98, Feb. 2009.
doi:10.1049/iet-map:20080097 Google Scholar
20. Guha, D. and J. Y. Siddiqui, "Resonant frequency of circular microstrip antenna covered with dielectric superstrate," IEEE Trans. Antennas Propagat., Vol. 51, 1649-1652, 2003.
doi:10.1109/TAP.2003.813620 Google Scholar
21. Losada, V., R. R. Boix, and M. Horno, "Resonant modes of circular microstrip patches in multilayered substrates," IEEE Trans. Microw. Theory Tech., Vol. 47, 488-497, 1999.
doi:10.1109/22.754883 Google Scholar
22. Bhattacharyya, A. and T. Tralman, "Effects of dielectric superstrate on patch antennas," Electron. Lett., Vol. 24, 356-358, Mar. 1988.
doi:10.1049/el:19880242 Google Scholar
23. Kirschning, M., R. H. Jansen, and N. H. L. Koster, "Accurate model for open end effect of microstrip lines," Electron. Lett., Vol. 17, 123-125, Feb. 1981.
doi:10.1049/el:19810088 Google Scholar
24. Guha, D., "Resonant frequency of circular microstrip antennas with and without air gaps," IEEE Trans. Antennas Propagat., Vol. 49, 55-59, Jan. 2001.
doi:10.1109/8.910530 Google Scholar
25. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
26. Chattopadhyay, S., B. Biswas, J. Y. Siddiqui, and D. Guha, "Rectangular microstrips with variable air gap and varying aspect ratio: Improved formulations and experiments," Microw Opt. Tech. Lett., Vol. 51, 169-173, 2009.
doi:10.1002/mop.24025 Google Scholar
27. James, J. R. and P. S. Hall, The Handbook of Microstrip Antennas, Vol. 1 & 2, Peter Peregrinus Ltd., 1989.
28. Chattopadhyay, S., M. Biswas, J. Y. Siddiqui, and D. Guha, "Input impedance of probe-fed rectangular microstrip antennas with variable air gap and varying aspect ratio," IET Microw. Antennas Propagat., Vol. 3, 1151-1156, 2009.
doi:10.1049/iet-map.2008.0320 Google Scholar
29. Ali, A., "A closed-form expression for the resonant frequency of rectangular microstrip antennas," Microw. Opt. Tech. Lett., Vol. 49, No. 8, 1848-1852, 2007.
doi:10.1002/mop.22572 Google Scholar
30. Kara, M., "Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates," Microw. Opt. Technol. Lett., Vol. 12, No. 3, 131-136, 1996.
doi:10.1002/(SICI)1098-2760(19960620)12:3<131::AID-MOP4>3.0.CO;2-I Google Scholar
31. Verma, A. K. and Z. Rostamy, "Modified Wolf model for determination of resonance frequency of dielectric covered circular microstrip patch antenna," Electron. Lett., Vol. 27, No. 24, 2234-2236, 1991.
doi:10.1049/el:19911382 Google Scholar
32. Verma, A. K., "Resonant frequency of uncovered and covered rectangular microstrip patch using modified Wolff model," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 1, 109-116, 1993.
doi:10.1109/22.210236 Google Scholar
33. Guney, K., "A new edge extention expression for the resonant frequency of rectangular microstrip antennas with thin and thick substrates," J. Commun. Tech. Electron., Vol. 49, 49-53, 2004. Google Scholar
34. Sengupta, D. L., "Approximate expression for the resonant frequency of rectangular patch antenna," Electron. Lett., Vol. 19, 834-835, 1983.
doi:10.1049/el:19830568 Google Scholar
35. Lo, Y. T., D. Solomon, and W. F. Richards, "Theory and experiment on microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 27, 137-145, 1979.
doi:10.1109/TAP.1979.1142057 Google Scholar
36. Chew, W. C. and Q. Liu, "Resonance frequency of a rectangular microstrip patch," IEEE Trans. Antennas Propagat., Vol. 36, 1045-1056, 1988.
doi:10.1109/8.7216 Google Scholar
37. Carver, K. R. and E. L. Coffey, Theoretical Investigation of the Microstrip Antenna, 1979.
38. Biswas, M. and A. Mandal, "Experimental and theoretical investigation of resonance and radiation characteristics of superstrate loaded rectangular patch antenna," Microw. Opt. Tech. Lett., Vol. 57, 791-799, 2014. Google Scholar
39. Biswas, M. and A. Mandal, "Experimental and theoretical investigation to predict the effect of superstrate on the impedance, bandwidth, and gain characteristics for a rectangular patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 16, 2093-2109, 2015.
doi:10.1080/09205071.2015.1039072 Google Scholar
40. Abboud, F., J. P. Damiano, and A. Papiernik, "Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD," IEE Proc. Pt. H., Vol. 1, No. 35, 323-326, 1988. Google Scholar
41. Long, S. A. and R. Garg, "Resonant frequency of electrically thick rectangular microstrip antenna," Electron. Lett., Vol. 23, No. 21, 1149-1151, 1987.
doi:10.1049/el:19870801 Google Scholar
42. Biswas, M. and S. Banik, "Characteristics of circular patch antenna with and without air gaps," Microw. Opt. Tech. Lett., Vol. 54, 1692-1699, 2012.
doi:10.1002/mop.26917 Google Scholar
43. Mesa, F., D. R. Jackson, and M. J. Freire, "Evolution of leaky modes on printed-circuit lines," IEEE Trans Microw. Theory Tech., Vol. 50, 94-104, 2002.
doi:10.1109/22.981253 Google Scholar
44. Nghiem, D., J. T. Williams, D. R. Jackson, and A. A. Oliner, "Existence of a leaky dominant mode on microstrip line with an isotropic substrate: Theory and measurements," IEEE Trans. Microwave Theory Tech., Vol. 44, 1710-1715, 1996.
doi:10.1109/22.538963 Google Scholar
45. Peixeiro, C. and A. M. Barbosa, "Leaky and surface waves in anisotropic printed antenna structures," IEEE Trans. Antennas Propagat., Vol. 40, 566-569, 1992.
doi:10.1109/8.142634 Google Scholar
46. Jackson, D. R. and A. A. Oliner, "A leaky-wave analysis of the high-gain printed antenna configuration," IEEE Trans. Antennas Propagat., Vol. 36, 905-910, 1988.
doi:10.1109/8.7194 Google Scholar