Vol. 98
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-12
Investigations on the Resonant Properties of a New Compact Asymmetric Single Split Resonator for Metamaterial Applications
By
Progress In Electromagnetics Research M, Vol. 98, 113-122, 2020
Abstract
This paper presents the resonant properties of a new Asymmetric Single Split Resonator (ASSR) structure for metamaterial applications. The compact uniplanar structure is an asymmetric single split ring resonator with two non-concentric rings. The prototype is fabricated on a substrate of dielectric constant 4.4, loss tangent 0.025, and thickness 1.6 mm and analyzed based on reflection and transmission coefficients and unit cell simulations. The fabricated unit cell of miniaturized ASSR has a footprint area of 0.163ƛ0 x 0.163ƛ0 where ƛ0 is the measured free-space wavelength corresponding to 1.63 GHz. The negative permeability meta-particle is best suited for high-performance multiband bandstop filters, sensors, and RFID applications in advanced communication systems. The paper presents the electric and magnetic responses of ASSR with its constitutive parameters for different field orientations in normal incidence.
Citation
Parackattu Viswanathan Anila, Manoj Mani, Remsha Moolat, Raghavan Dinesh, Anju Pradeep, Karavilavadakkethil Chellappan Prakash, and Pezholil Mohanan, "Investigations on the Resonant Properties of a New Compact Asymmetric Single Split Resonator for Metamaterial Applications," Progress In Electromagnetics Research M, Vol. 98, 113-122, 2020.
doi:10.2528/PIERM20092304
References

1. Pendry, J. B., A. J. Robbins, D. J. Stewart, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Zhang, J., H. Chen, L. Ran, Y. Luo, and J. A. Kong, "Two-dimensional cross embedded metamaterials," PIERS Online, Vol. 3, No. 3, 241-245, 2007.
doi:10.2529/PIERS061126211441

4. Faruque, M. R. I., M. T. Islam, and N. Misran, "Design analysis of new metamaterial for EM absorption reduction," Progress In Electromagnetics Research, Vol. 124, 119-135, 2012.
doi:10.2528/PIER11112301

5. Chen, H., L.-X. Ran, J. T. Huang-Fu, X. M. Zhang, K. S. Chen, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
doi:10.2528/PIER04051201

6. Zheludev, N. I., "The road ahead for metamaterials," Science, Vol. 328, 582-583, 2010.
doi:10.1126/science.1186756

7. Lee, J.-G. and J.-H. Lee, "Suppression of spurious radiations of patch antennas using split-ring resonators (SRRs)," Microw. Opt. Technol. Lett., Vol. 48, 283-–287, 2006.
doi:10.1002/mop.21328

8. Panda, P. K. and D. Ghosh, "Isolation, and gain enhancement of patch antennas using EMNZ superstrate," Int. Journal of Electronics and Communications, Vol. 86, 164-170, 2018.
doi:10.1016/j.aeue.2018.01.037

9. Anila, P. V., V. P. Sarin, M. Manoj, M. Remsha, and P. Mohanan, "Broadband non-resonant split ring resonator-based artificial high dielectric substrate," Int. Journal of Electronics and Communications, Vol. 117, 153095, 2020.
doi:10.1016/j.aeue.2020.153095

10. Fedotov, V. A., M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, "Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry," Phys. Rev. Lett., Vol. 99, 147401, 2007.
doi:10.1103/PhysRevLett.99.147401

11. Al-Naib, I. A. I., C. Jansen, and M. Koch, "Thin-film sensing with planar asymmetric metamaterial resonators," App. Phys. Lett., Vol. 93, 083507, 2008.
doi:10.1063/1.2976636

12. Al-Naib, I. A. I., C. Jansen, and M. Koch, "High Q-factor metasurfaces based on miniaturized asymmetric single split resonators," Appl. Phys. Lett., Vol. 94, 153505, 2009.
doi:10.1063/1.3122147

13. Al-Naib, I., R. Singh, C. Rockstuhl, F. Lederer, S. Delprat, et al. "Excitation of a high-Q subradiant resonance mode in mirrored single-gap asymmetric split ring resonator terahertz metamaterials," Appl. Phys. Lett., Vol. 101, 071108, 2012.
doi:10.1063/1.4745790

14. Li, Y., Z. Zhao, Z. Tang, and Y. Yin, "A low-profile, dual-band filtering antenna with high selectivity for 5G sub-6GHz applications," Microw. Opt. Technol. Lett., Vol. 61, 2282-2287, 2019.
doi:10.1002/mop.31891

15. Selvaraju, R., M. H. Jamaluddin, M. R. Kamarudin, J. Nasir, and M. H. Dahri, "Complementary split ring resonator for isolation enhancement in 5G communication antenna array," Progress In Electromagnetics Research C, Vol. 83, 217-228, 2018.
doi:10.2528/PIERC18011019

16. Abdelgwad, A. H. and M. Ali, "Capacity and efficiency improvement of MIMO antenna systems for 5G handheld terminals," Progress In Electromagnetics Research C, Vol. 104, 269-283, 2020.

17. Huang, M., Y. Cheng, Z. Cheng, H. Chen, X. Mao, and R. Gong, "Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle," Optics Communications, Vol. 415, 194-201, 2018.
doi:10.1016/j.optcom.2018.01.051

18. Zou, H. and Y. Cheng, "Design of a six-band terahertz metamaterial absorber for temperature sensing application," Optical Materials, Vol. 88, 674-679, 2019.
doi:10.1016/j.optmat.2019.01.002

19. Li, W. and Y. Cheng, "Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure," Optics Communications, Vol. 462, 125265, 2020.
doi:10.1016/j.optcom.2020.125265

20. Cheng, Y., J. Fan, H. Luo, and F. Chen, "Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial," IEEE Access, Vol. 8, 7615-7621, 2020.
doi:10.1109/ACCESS.2019.2962299

21. Fan, J. and Y. Cheng, "Broadband high-efficiency cross-polarization conversion and multifunctional wavefront manipulation based on chiral structure metasurface for terahertz wave," J. of Physics D: Applied Physics, Vol. 53, No. 2, 2020.
doi:10.1088/1361-6463/ab4d76

22. Cheng, Y., H. Luo, and F. Chen, "Broadband metamaterial microwave absorber based on asymmetric sectional resonator structures," J. Appl. Phys., Vol. 127, 214902, 2020.
doi:10.1063/5.0002931

23. Chen, F., Y. Cheng, and H. Luo, "A broadband tunable terahertz metamaterial absorber based on single-layer complementary Gammadion-shaped graphene," Materials, Vol. 13, 860, 2020.
doi:10.3390/ma13040860

24. Cheng, Y., F. Chen, and H. Luo, "Triple-band perfect light absorber based on hybrid metasurface for sensing application," Nanoscale Res. Lett., Vol. 15, 103, 2020.
doi:10.1186/s11671-020-03332-x

25. Cheng, Y., H. Zhao, and C. Li, "Broadband tunable terahertz metasurface absorber based on complementary-wheel-shaped graphene," Optical Materials, Vol. 109, 110369, 2020.
doi:10.1016/j.optmat.2020.110369

26. Wang, Q. and Y. Cheng, "Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors," AEU --- International Journal of Electronics and Communications, Vol. 120, 153198, 2020.
doi:10.1016/j.aeue.2020.153198

27. Keshavarz, S. and N. Nozhat, "Dual-band Wilkinson power divider based on composite right/left-handed transmission lines," Proceed. of 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTICON), 1-4, Chiang Mai, 2016.

28. Keshavarz, S., A. Abdipour, A. Mohammadi, and R. Keshavarz, "Design and implementation of low loss and compact microstrip triplexer using CSRR loaded coupled lines," AEU --- International Journal of Electronics and Communications, Vol. 111, 152913, 2019.
doi:10.1016/j.aeue.2019.152913

29. Keshavarz, R., M. Danaeian, M. Movahhedi, and A. Hakimi, "A compact dual-band branch-line coupler based on the interdigital transmission line," Proceed. of 19th Iranian Conference on Electrical Engineering, Tehran, 2011.

30. Keshavarz, R., Y. Miyanaga, M. Yamamoto, T. Hikage, and N. Shariati, "Metamaterial-inspired quad-band notch filter for LTE band receivers and WPT applications," Proceed. of 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science, 1-4, Rome, Italy, 2020.

31. Keshavarz, R., A. Mohammadi, and A. Abdipour, "A quad-band distributed amplifier with E-CRLH transmission line," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 12, 4188-4194, 2013.
doi:10.1109/TMTT.2013.2288939

32. Kulkarni, J., "Multi-band printed monopole antenna conforming bandwidth requirement of GSM/WLAN/WiMAX standards," Progress In Electromagnetics Research Letters, Vol. 91, 59-66, 2020.
doi:10.2528/PIERL20032104

33. Aydin, K., I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, "Investigation of magnetic resonances for different split-ring resonator parameters and designs," New Journal of Physics, Vol. 7, 168, 2005.
doi:10.1088/1367-2630/7/1/168

34. Daw, A. F., P. A. Fawzey, and M. N. Adly, "Quad-band resonator depends on CRLH/D-CRLH structures," Microwaves & RF, October 2019.

35. Xie, Q., G. Dong, B. Wang, et al. "High-Q Fano resonance in terahertz frequency based on an asymmetric metamaterial resonator," Nanoscale Res. Lett., Vol. 13, 294, 2018.
doi:10.1186/s11671-018-2677-0