Vol. 99
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-12-17
Aircraft Target Classification Method Based on EEMD and Multifractal
By
Progress In Electromagnetics Research M, Vol. 99, 223-231, 2021
Abstract
Due to the limitation of low-resolution radar system and the influence of background clutter in the detection process, it is hard for low-resolution radars to classify and identify aircraft targets. To solve the above problems, a classification method for aircraft based on Ensemble Empirical Mode Decomposition (EEMD) and multifractal is proposed, in which the intrinsic modes are obtained by EEMD, and the waveform entropy in the Doppler domain is used to screen and reconstruct the intrinsic modes. The multifractal feature of the target echo data is extracted from the reconstructed signal, and then the aircraft target classification and recognition experiment is carried out with support vector machine. The experimental results show that the feature data extracted by ensemble empirical mode decomposition and multifractal analysis can be used for the classification and identification of civil aircraft and fighter aircraft, and the accuracy rate is about 98.5%, which is higher than that of time-domain multifractal method.
Citation
Junyong Hu, Qiusheng Li, Qianli Zhang, and Yingjie Zhong, "Aircraft Target Classification Method Based on EEMD and Multifractal," Progress In Electromagnetics Research M, Vol. 99, 223-231, 2021.
doi:10.2528/PIERM20101802
References

1. Li, T., G. B. Yang, P. X. Wang, et al. "High-frequency radar aircraft detection method based on neural networks and time-frequency algorithm," IET Radar Sonar Navig., Vol. 7, No. 8, 875-880, 2013.
doi:10.1049/iet-rsn.2012.0228

2. Weinberg, G. V., "Assessing Pareto fit to high-resolution high-grazing angle sea clutter," IET Electron. Lett., Vol. 47, 516-517, 2011.
doi:10.1049/el.2011.0518

3. Liu, J., N. Fang, B. F. Wang, and Y. J. Xie, "Scale-space theory-based multi-scale features for aircraft classification using HRRP," Electron. Lett., Vol. 52, 475-477, 2016.
doi:10.1049/el.2015.3583

4. Lei, S., X. Qiu, Y. Zhang, L. Huang, and D. Chibiao, "Analysis of the multipath scattering effects in high-resolution SAR images," IEEE Geosci. Remote Sens. Lett., Vol. 17, No. 4, 616-620, Apr. 2020.
doi:10.1109/LGRS.2019.2930527

5. Zhang, G., R. Li, and D. Wang, "A review of target classification methods for low-resolution radar," Digital Communication World, Vol. 161, No. 5, 288, 2018.

6. Bell, M. R. and R. A. Grubbs, "JEM modeling and measurement for radar target identification," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, 73-87, Jan. 1993.
doi:10.1109/7.249114

7. Li, Q., "Analysis of modulation characteristics on return signals from aircraft rotating blades in the conventional radar," Journal of University of Chinese Academy of Sciences, Vol. 30, No. 6, 829-838, 2013.

8. Shao, Y., H. Wang, H. Zhang, and H. Chen, "Target recognition of low-resolution radar based on waveform feature," Shipboard Electronic Countermeasure, Vol. 38, No. 4, 62-65+69, 2015.

9. Zhu, Z. and J. Zhou, "Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique," J. Cent. South Univ. Technol., Vol. 18, 809-815, 2011.
doi:10.1007/s11771-011-0766-7

10. Li, F., D. Hu, C. Ding, and W. Zhang, "InSAR phase noise reduction based on empirical mode decomposition," IEEE Geoscience and Remote Sensing Letters, Vol. 10, 1180-1184, 2013.
doi:10.1109/LGRS.2012.2226233

11. Xue, W., X. Dai, J. Zhu, Y. Luo, and Y. Yang, "A noise suppression method of ground penetrating radar based on EEMD and permutation entropy," IEEE Geoscience and Remote Sensing Letters, Vol. 16, No. 10, 1625-1629, Oct. 2019.
doi:10.1109/LGRS.2019.2902123

12. Pouraimis, G., A. Kotopoulis, E. Kallitsis, and P. Frangos, "Characterization of three-dimensional rough fractal surfaces from backscattered radar data," Elektronika Ir Elektrotechnika, Vol. 23, No. 4, 45-50, 2017.
doi:10.5755/j01.eie.23.4.18721

13. Azzaz, N. and B. Haddad, "Classification of radar echoes using fractal geometry," Chaos, Solitons & Fractals, Vol. 98, 130-144, 2017.
doi:10.1016/j.chaos.2017.03.017

14. Li, Q. S., J. H. Pei, and X. Y. Liu, "Self-a±ne fractal modelling of aircraft echoes from low-resolution radars," Defence Science Journal, Vol. 66, No. 2, 151-155, 2016.
doi:10.14429/dsj.66.8423

15. Cherouat, S., F. Soltani, F. Schmitt, et al. "Using fractal dimension to target detection in bistatic SAR data," Signal Image & Video Processing, Vol. 9, No. 2, 365-371, 2015.
doi:10.1007/s11760-013-0453-2

16. Li, Q. and W. Xie, "Target classification with low-resolution surveillance radars based on multifractal features," Progress In Electromagnetics Research B, Vol. 45, 291-308, 2012.
doi:10.2528/PIERB12091509

17. Fan, Y., "Study on weak ``Target detection based on fractal and the multifractal analysis in sea clutter background'',", Master's Degree Thesis of Xidian University, 2016.

18. Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al. "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings Mathematical Physical & Engineering Sciences, Vol. 454, No. 1971, 903-995, 1998.
doi:10.1098/rspa.1998.0193

19. Wu, Z. and N. E. Huang, "Ensemble empirical mode decomposition: a noise-assisted data analysis method," Advances in Adaptive Data Analysis, Vol. 1, No. 1, 1-41, 2009.
doi:10.1142/S1793536909000047

20. Li, M., J. Wu, L. Zuo, W. Song, and H. Liu, "Aircraft target classification and recognition algorithm based on measured data," Journal of Electronics & Information Technology, Vol. 40, No. 11, 2606-2613, 2018.

21. Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, 1982.

22. Grassberger, P., "Generalized dimensions of strange attractors," Physics Letters A, Vol. 97, No. 6, 227-230, 1983.
doi:10.1016/0375-9601(83)90753-3

23. Hasey, T. C., M. H. Jenson, L. P. Kadanoff, et al. "Fractal measures and their singularities: The characterization of strange sets," Physics Review A, Vol. 33, No. 2, 1141-1151, 1986.
doi:10.1103/PhysRevA.33.1141

24. Hentschel, H. G. E. and I. Procaccia, "The infinite number of generalized dimensions of fractals and strange attractors," Physica D, Vol. 8, No. 3, 435-444, 1983.
doi:10.1016/0167-2789(83)90235-X

25. Li, Q. S. and W. X. Xie, "Target classification by surveillance radar based on multifractal features," Application Research of Computers, Vol. 30, No. 2, 405-409, 2013.

26. Duda, R. O., P. E. Hart, and D. G. Stork, Pattern Classification, 2nd Ed., 259-264, John Wiley and Sons, 2001.

27. Wang, Z., "Research on text classification based on SVM algorithm,", Master's Degree Thesis of Jilin University, 2017.

28. Zhang, D., J. Zhang, K. Yao, M. Cheng, and Y. Wu, "Infrared ship-target recognition based on SVM classification," Infrared and Laser Engineering, Vol. 45, No. 1, 179-184, 2016.

29. Geng, R., D. Cui, and B. Xu, "Support vector machine-based combinational model for air traffic forecasts," J. Tsinghua Univ. (Sci.&Tech.), Vol. 7, 1205-1208, 2008.

30. Wu, S., Q. Li, and H. Zhu, "Self-affine fractal analysis and target classification of aircraft echoes," Journal of Gannan Normal University, Vol. 37, No. 6, 45-49, 2016.

31. Li, Q., X. Xie, H. Zhu, and Q. Wu, "Fractal characteristics analysis and target classification of low-resolution radar aircraft echoes using fractional order fourier domain," Application Research of Computers, Vol. 35, No. 9, 2869-2872+2876, 2008.