1. Saggese, A. and R. De Luca, "A fractal-like resistive network," Eur. J. Phys., 065006, 2014.
doi:10.1088/0143-0807/35/6/065006 Google Scholar
2. Mungan, C. E. and T. C. Lipscombe, "Babylonian resistor networks," Eur. J. Phys., 531-537, 2012.
doi:10.1088/0143-0807/33/3/531 Google Scholar
3. Fry, T. C., "The use of continued fractions in the design of electrical networks," Elec. Net., 463-498, 1929. Google Scholar
4. Kagan, M., "On equivalent resistance of electrical circuits," Am. J. Phys., Vol. 83, 53-63, 2015.
doi:10.1119/1.4900918 Google Scholar
5. Cserti, J., "Application of the lattice Greens function for calculating the resistance of an infinite network of resistors," Am. J. Phys., Vol. 68, 896-906, 2000.
doi:10.1119/1.1285881 Google Scholar
6. De Carlo, R. and P.-M. Lin, Linear Circuit Analysis: Time Domain, Phasor, and Laplace Transform Approaches, Oxford University Press, 2001.
7. Baak, D. A. V., "Variational alternatives to Kirchhov's loop theorem in dc circuits," Am. J. Phys., Vol. 67, 36-44, 1999.
doi:10.1119/1.19188 Google Scholar
8. Kreyszig , E., Advanced Engineering Mathematics, 5th Ed., Wiley & Sons, 1983.
9. Alexopoulos, A., "Binary circular inclusions in an effective medium approximation," Phys. Lett. A, 385-392, 2005.
doi:10.1016/j.physleta.2005.02.046 Google Scholar
10. Alexopoulos, A., "Quantum scattering via the discretisation of Schrodinger's equation," Phys. Lett. A, Vol. 363, 66-70, 2007.
doi:10.1016/j.physleta.2006.10.099 Google Scholar
11. Carmichael, R. D., The Theory of Numbers, and Diophantine Analysis, Dover, New York, 1959 . Google Scholar