Vol. 95
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-12-23
An Efficient Technique for Wide Band RCS Reduction of Patch Antenna Array Using Rectangular Cavity Walls and Phase Cancellation Principle
By
Progress In Electromagnetics Research Letters, Vol. 95, 99-105, 2021
Abstract
The rectangular cavity is investigated and applied in the field of the radar cross section reduction (RCSR) of patch antennas for the first time. An integrated and efficient design technique is presented which uses both a slotted rectangular cavity and reflective phase cancellation by a simple artificial magnetic conductor (AMC) element. On condition that ensuring the radiation performance of the patch antenna does not deteriorate, the in-band radar cross section (RCS) of the antenna can be reduced by 12.2 dB at 7.6 GHz just relying on a type of phase-regulated AMC elements. On this basis, the rectangular cavity walls were first loaded surrounding the above-mentioned low-RCS patch antenna. The relative bandwidth (in which RCS was reduced by more than 8 dB) went from 3.33% to 50% in the RCSR ohttps://www.baidu.com/?tn=62095104_43_oem_dgf the antenna. Meanwhile, the RCS could be reduced by an additional 5 dB at its working frequency (7.6 GHz).
Citation
Xiaoyuan Zhang, Xiaoxiang He, Yang Yang, and Chenyue Xu, "An Efficient Technique for Wide Band RCS Reduction of Patch Antenna Array Using Rectangular Cavity Walls and Phase Cancellation Principle," Progress In Electromagnetics Research Letters, Vol. 95, 99-105, 2021.
doi:10.2528/PIERL20102703
References

1. Li, Y., Y. Liu, and S.-X. Gong, "Microstrip antenna using ground-cut slots and miniaturization techniques with low RCS," Progress In Electromagnetics Research Letters, Vol. 1, 211-220, 2008.
doi:10.2528/PIERL07120610

2. Liu, T., C. Zhou, X. He, et al. "A low RCS microstrip antenna based on broadband AMC structures," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2018.

3. Al-Nuaimi, M. K. T., Y. He, and W. Hong, "In-band and out-of-band RCS reduction of a patch antenna using anisotropic unit cell," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019.

4. Zhang, C., J. Gao, et al. "Low scattering microstrip antenna array using coding artificial magnetic conductor ground," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 869-872, 2018.
doi:10.1109/LAWP.2018.2820220

5. Jia, Y., Y. Liu, H. Wang, et al. "Low RCS microstrip antenna using polarisation-dependent frequency selective surface," Electronics Letters, Vol. 50, No. 14, 978-979, 2014.
doi:10.1049/el.2014.1003

6. Liu, Y., Y. Hao, K. Li, et al. "Radar cross section reduction of a microstrip antenna based on polarization conversion metamaterial," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 80-83, 2016.
doi:10.1109/LAWP.2015.2430363

7. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low- RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904

8. Ling, H., R.-C. Chou, and S.-W. Lee, "Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 2, 194-205, 1989.
doi:10.1109/8.18706

9. Xu, L., J. Tian, and X.-W. Shi, "A closed-form solution to analyze RCS of cavity with rectangular cross section," Progress In Electromagnetics Research, Vol. 79, 195-208, 2008.
doi:10.2528/PIER07090503

10. Wang, T. M., A. Cuevas, and H. Ling, "RCS of a partially open rectangular box in the resonant region," IEEE Transactions on Antennas and Propagatio, Vol. 38, No. 9, 1498-1504, 1990.
doi:10.1109/8.57005

11. Valagiannopoulos, C. A., "Arbitrary currents on circular cylinder with inhomogeneous cladding and RCS optimization," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 5, 665-680, 2007.
doi:10.1163/156939307780667337

12. Griesser, T. and C. A. Balanis, "RCS analysis and reduction for lossy dihedral corner reflectors," Proceedings of the IEEE, Vol. 77, No. 5, 806-814, 1989.
doi:10.1109/5.32071

13. Valagiannopoulos, C. A., "On smoothening the singular field developed in the vicinity of metallic edges," International Journal of Applied Electromagnetics and Mechanics, Vol. 31, No. 2, 67-77, 2009.
doi:10.3233/JAE-2009-1048

14. Lee, S., K. Y. Jung, H. Choo, et al. "Scattering analysis of modulated corrugations in a conducting circular cylinder and study of RCS reduction," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 11, 7162-7167, 2019.
doi:10.1109/TAP.2019.2908020

15. Valagiannopoulos, C. A., "Closed-form solution to the scattering of a skew strip field by metallic PIN in a slab," Progress In Electromagnetics Research, Vol. 79, 1-21, 2008.
doi:10.2528/PIER07092206