1. Wang, Q., P. Zhao, and X. Du, "Electromagnetic vibration analysis and slot-pole structural optimization for a novel integrated permanent magnet in-wheel motor," Energies, Vol. 13, No. 13, 3488, 2020.
doi:10.3390/en13133488 Google Scholar
2. Li, J., K. Wang, and F. Li, "Analytical prediction of optimal split ratio of consequent-pole permanent magnet machines," IET Electric Power Applications, Vol. 3, No. 12, 365-372, 2017. Google Scholar
3. Zhu, X., W. Hua, and Z. Wu, "Cogging torque minimisation in FSPM machines by right-angle-based tooth chamfering technique," IET Electric Power Applications, Vol. 5, No. 12, 627-634, 2018.
doi:10.1049/iet-epa.2017.0718 Google Scholar
4. Mehrdad, J. and B. Hossein, "Optimum design of the stator parameters for noise and vibration reduction in BLDC motor," The Institution of Engineering and Technology, Vol. 12, No. 9, 1297-1305, 2018. Google Scholar
5. Zhu, X., W. Hua, and G. Zhang, "Analysis and reduction of cogging torque for flux-switching permanent magnet machines," IEEE Transactions on Industry Applications, Vol. 6, No. 55, 5854-5864, 2019.
doi:10.1109/TIA.2019.2938721 Google Scholar
6. Chang-Min, L., H. Seo, and J. Lee, "Optimization of vibration and noise characteristics of skewed permanent brushless direct current motor," IEEE Transactions on Magnetics, Vol. 53, No. 11, 1-5, 2017. Google Scholar
7. Fu, L., S. Zuo, W. Deng, and S. Wu, "Reduction of vibration and acoustic noise in permanent magnet synchronous motor by optimizing magnetic forces," Journal of Sound and Vibration, Vol. 429, 193-205, 2018. Google Scholar
8. Ma, C., J. Li, and H. Zhao, "3-D analytical model of armature reaction field of IPMSM with multi-segmented skewed poles and multi-layered flat wire winding considering current harmonics," IEEE ACCESS, Vol. 8, 151116-1511124, 2020.
doi:10.1109/ACCESS.2020.3017005 Google Scholar
9. Dong, Q., X. Liu, and H. Qi, "Analysis and evaluation of electromagnetic vibration and noise in permanent magnet synchronous motor with rotor step skewing," Science China-Technological Sciences, Vol. 62, No. 5, 839-848, 2019.
doi:10.1007/s11431-018-9458-5 Google Scholar
10. Lecointe, J.-P., B. Cassoret, and J.-F. Brudny, "Distinction of toothing and saturation effects on magnetic noise of induction motors," Progress In Electromagnetics Research, Vol. 112, 125-137, 2011.
doi:10.2528/PIER10110803 Google Scholar
11. Zhang, W., Y. Xu, and H. Huang, "Vibration reduction for dual-branch three-phase permanent magnet synchronous motor with carrier phase-shift technique," IEEE Transactions on Power Electronics, Vol. 35, No. 1, 607-618, 2020.
doi:10.1109/TPEL.2019.2910311 Google Scholar
12. Hara, T., T. Ajima, and Y. Tanabe, "Analysis of vibration and noise in permanent magnet synchronous motors with distributed winding for the PWM method," IEEE Transactions on Industry Applications, Vol. 54, No. 6, 6042-6049, 2018.
doi:10.1109/TIA.2018.2847620 Google Scholar
13. Rafaq, M. S. and J. W. Jung, "A comprehensive review of state-of-the-art parameter estimation techniques for permanent magnet synchronous motors in wide speed range," IEEE Transactions on Industrial Informatics, Vol. 7, No. 16, 4747-4758, 2020.
doi:10.1109/TII.2019.2944413 Google Scholar
14. Ramaiah, V. J. and S. Keerthipati, "Hybrid PWM scheme for pole-phase modulation induction motor drive using carrier-based hexagonal and octadecagonal SVPWM," IEEE Transactions on Industrial Electronics, Vol. 9, No. 67, 7312-7320, 2020.
doi:10.1109/TIE.2019.2946537 Google Scholar
15. Liu, C., J. Lu, Y. Wang, G. Le, and J. Zhu, "Techniques for reduction of the cogging torque in claw pole machines with SMC cores," Energies, Vol. 10, No. 10, 1541, 2017.
doi:10.3390/en10101541 Google Scholar
16. Chen, M., K.-T. Chau, C. H. T. Lee, and C. Liu, "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.
doi:10.2528/PIER15072701 Google Scholar
17. Nobahari, A., A. Darabo, and A. Hassannia, "Various skewing arrangements and relative position of dual rotor of an axial °ux induction motor, modelling and performance evaluation," IET Electric Power Applications, Vol. 4, No. 12, 575-580, 2018.
doi:10.1049/iet-epa.2017.0716 Google Scholar
18. Bonthu, S. S. R., T. Bin, and S. Choi, "Optimal torque ripple reduction technique for outer rotor permanent magnet synchronous reluctance motors," IEEE Transactions on Energy Conversion, Vol. 3, No. 33, 1184-1192, 2018.
doi:10.1109/TEC.2017.2781259 Google Scholar
19. Huang, Y., L. Yan, F. Yang, and W. Zeng, "Research on active disturbance rejection control of hybrid excitation magnetic suspension switched reluctance motor considering noise," Progress In Electromagnetics Research M, Vol. 93, 197-207, 2020.
doi:10.2528/PIERM20040903 Google Scholar
20. Ruba, M., F. Jurca, and L. Czumbil, "Synchronous reluctance machine geometry optimisation through a genetic algorithm based technique," IET Electric Power Applications, Vol. 3, No. 12, 431-438, 2018.
doi:10.1049/iet-epa.2017.0455 Google Scholar
21. Rick, S., K. P. Aryanti, F. David, and H. Kay, "Hybrid acoustic model of electric vehicles: Force excitation in permanent-magnet synchronous machines," IEEE Transactions on Industry Applications, Vol. 52, No. 4, 2979-2987, 2016.
doi:10.1109/TIA.2016.2547360 Google Scholar