Vol. 95
Latest Volume
All Volumes
PIERL 129 [2026] PIERL 128 [2025] PIERL 127 [2025] PIERL 126 [2025] PIERL 125 [2025] PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2020-12-18
Novel Monopole Microstrip Filtenna for UWB Applications
By
Progress In Electromagnetics Research Letters, Vol. 95, 63-71, 2021
Abstract
This manuscript proposes an Ultra-Wide band (UWB) Filtering Antenna (Filtenna) with application-based notches at Wi-MAX (3.3-3.7 GHz), WLAN (5.15-5.875 GHz) and ITU (7.725-8.275 GHz) bands. Initially, a monopole antenna is designed. To enhance bandwidth and bring about impedance matching, its ground plane is modified by introducing a triangular shaped defected ground structure (DGS) under the feedline, smoothening of upper edges of the ground plane and a rectangular DGS. Later, the triple notched band is created at 3.5 GHz, 5.5 GHz and 8 GHz by utilizing the notches generated by Inverted-U shaped defected microstrip structure (DMS) on the patch, U-type DMS on feedline, and C shaped resonator adjacent to the feedline respectively. The filtenna is an omnidirectional radiation pattern antenna which works within the proposed frequency band of operation having low insertion loss and good selectivity. Also, the VSWR is found to be <2, and peak gain is found to be 4 dBi. While studying the proposed filtenna, the simulated and measured frequency responses were observed to be in almost unison as if following each other.
Citation
Md. Maqubool Hosain, Sumana Kumari, and Anjini Kumar Tiwary, "Novel Monopole Microstrip Filtenna for UWB Applications," Progress In Electromagnetics Research Letters, Vol. 95, 63-71, 2021.
doi:10.2528/PIERL20103003
References

1. Tseng, C. F. and C. L. Huang, "Microstrip-fed monopole dumb-bell shaped antenna for UWB application," Microw. Opt. Technol. Lett., Vol. 49, 1470-1473, 2007.
doi:10.1002/mop.22404        Google Scholar

2. Chung, W. T., C. H. Lee, and C. Y. D. Sim, "Compact monopole antenna design for WLAN/UWB applications," Microw. Opt. Technol. Lett., Vol. 51, 2874-2878, 2009.
doi:10.1002/mop.24759        Google Scholar

3. Xiao, J. X., M. F. Wang, and G. J. Li, "A ring monopole antenna for UWB application," Microw. Opt. Technol. Lett., Vol. 52, 179-182, 2010.
doi:10.1002/mop.24857        Google Scholar

4. Sefidi, M., Y. Zehforoosh, and S. Moradi, "A monopole antenna for wireless communication systems and UWB application," Microw. Opt. Technol. Lett., Vol. 55, 1856-1860, 2013.
doi:10.1002/mop.27721        Google Scholar

5. Chiu, C. W. and C. S. Li, "A CPW-fed band notched slot antenna for UWB applications," Microw. Opt. Technol. Lett., Vol. 51, 1587-1592, 2009.
doi:10.1002/mop.24343        Google Scholar

6. Weng, Y. F., S. W. Cheung, and T. I. Yuk, "Compact ultra wideband antennas with single band notched characteristic using simple ground stubs," Microw. Opt. Technol. Lett., Vol. 53, 523-529, 2011.
doi:10.1002/mop.25817        Google Scholar

7. Tsai, L. C. and W. J. Chen, "A UWB antenna with band notched filters using slot-type split ring resonators," Microw. Opt. Technol. Lett., Vol. 58, 2595-2598, 2016.
doi:10.1002/mop.30101        Google Scholar

8. Feng, D., H. Zhai, L. Xi, K. Zhang, and D Yang, "A new filter antenna using improved stepped impedance hairpin resonator," Microw. Opt. Technol. Lett., Vol. 59, 2934-2938, 2017.
doi:10.1002/mop.30847        Google Scholar

9. Tsai, L. C., "A ultra wideband antenna with dual-band band-notch filters," Microw. Opt. Technol. Lett., Vol. 59, 1861-1866, 2017.
doi:10.1002/mop.30639        Google Scholar

10. Zarrabi, F. B., A. M. Shire, M. Rahimi, and N. P. Gandji, "Ultra-wideband tapered patch antenna with fractal slot for dual notch application," Microw. Opt. Technol. Lett., Vol. 56, 1344-1348, 2014.
doi:10.1002/mop.28332        Google Scholar

11. Habib, M. A., A. Bostani, A. Djaiz, M. Nedil, M. C. E. Yagoub, and T. A. Denidni, "Ultra wideband CPW-fed aperture antenna with WLAN band rejection," Progress In Electromagnetic Research, Vol. 106, 17-31, 2010.
doi:10.2528/PIER10011905        Google Scholar

12. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an Inverted-L notch filter for the 5 GHz WLAN band," Progress In Electromagnetic Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507        Google Scholar

13. Tu, Z., W. Li, and Q. Chu, "Single-layer differential CPW-fed notch band tapered-slot UWB antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1296-1299, 2014.
doi:10.1109/LAWP.2014.2332355        Google Scholar

14. Hosain, M. M., S. Kumari, and A. K. Tiwary, "Sunflower shaped fractal filtenna for WLAN and ARN application," Microw. Opt. Technol. Lett., Vol. 62, 346-354, 2020.
doi:10.1002/mop.32013        Google Scholar

15. Santasri, K. and M. Debjani, "A planar microstrip-fed tri-band filtering antenna for WLAN/WiMAX application," Microw. Opt. Technol. Lett., Vol. 57, 233-237, 2015.
doi:10.1002/mop.28813        Google Scholar

16. Rehman, S. U. and M. A. S. Alkanhal, "Design and system characterization of ultra wideband antennas with multiple band rejection," IEEE Access, Vol. 5, 17988-17996, 2017.
doi:10.1109/ACCESS.2017.2715881        Google Scholar

17. Nouri, A. and G. R. Dadashzadeh, "A compact UWB band notched printed monopole antenna with defected ground structure," IEEE Anten. and Wirel. Propagat. Lett., Vol. 10, 1178-1181, 2011.
doi:10.1109/LAWP.2011.2171312        Google Scholar

18. Puri, S. C., S. Das, and M. G. Tiwary, "UWB monopole antenna with dual-band-notched characteristics," Microw. Opt. Technol. Lett., 1-8, 2019.        Google Scholar

19. Gao, G., L. He, B. Hu, and X. Cong, "Novel dual band-notched UWB antenna with T-shaped slot and CSRR structure," Microw. Opt. Technol. Lett., Vol. 57, 1584-1590, 2015.
doi:10.1002/mop.29175        Google Scholar

20. Lin, C.-C., P. Jin, and R. W. Ziolkowski, "Single, dual and tri-band notched ultra wideband (UWB) antenna using capacitively loaded loop (CLL) resonators," IEEE Transaction on Antennas and Propagation, Vol. 60, 102-109, 2012.
doi:10.1109/TAP.2011.2167947        Google Scholar

21. Yadav, A., S. Agrawal, and R. P. Yadav, "SSR and S-shape slot loaded triple band notched UWB antenna," Int. J. Electron. Commun. (AEU), Vol. 79, 192-198, 2017.
doi:10.1016/j.aeue.2017.06.003        Google Scholar

22. Rahman, M., W. T. Khan, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SSR, CSRR and DGS," Int. J. Electron. Commun. (AEU), Vol. 93, 116-122, 2018.
doi:10.1016/j.aeue.2018.06.010        Google Scholar

23. Hussein, H. M. G., "New compact micro strip patch filtenna structures with partitioned ground for 3G/4G applications," International Journal of Engineering & Technology, Vol. 12, 113-117, 2012.        Google Scholar

24. Zaghloul, R. H. and H. M. G. Hussein, "A new compact multi resonance H-patch filtenna," Antennas and Propagation Society International Symposium (APSURSI), 1718-1719, 2013.        Google Scholar

25. Hussein, H. M. G., M. S. Ali, and A. R. Fouad, "A novel compact ultra-wideband monopole micro-strip filtenna," Journal of Applied Sciences, Vol. 13, 1106-1111, 2013.
doi:10.3923/jas.2013.5723.5728        Google Scholar

26. Zaghloul, R. H. and H. M. G. Hussein, "Novel compact micro-strip filtenna structures," International Refereed Journal of Engineering and Science (IRJES), Vol. 3, 104-114, 2014.        Google Scholar

27. Zaghloul, R. H. and H. M. G. Hussein, "Novel compact CPW filtenna structures," International Journal of Advanced Engineering Applications, Vol. 7, 15-25, 2014.        Google Scholar

28. Hussein, H. M. G. and R. H. Zaghloul, "A new compact stripline patch filtenna module," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 12, 1-14, 2016.        Google Scholar

29. Waqas, A. and D. Budimir, "UWB filtennas with dual band notch for WiMAX and WLAN bands using circular and square resonators," IEEE Microwave and Wireless Components Letters, Vol. 26, 1-3, 2016.
doi:10.1109/LMWC.2016.2623873        Google Scholar

30. Li, W. T., Y. Q. Hei, H. Subbaraman, X. W. Shi, and R. T. Chen, "Novel printed filtenna with dual notches and good out-of-band characteristics for UWB-MIMO applications," IEEE Microwave and Wireless Components Letters, Vol. 26, 1-3, 2016.
doi:10.1109/LMWC.2016.2615007        Google Scholar