Vol. 95
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-01-21
New Theoretical Floquet Modal Analysis to Study 3-d Finite Almost Periodic Structures with Coupled Cells
By
Progress In Electromagnetics Research Letters, Vol. 95, 163-169, 2021
Abstract
This research letter offers a generalization character to our previous work [4, 5] to examine a 3-D almost periodic phased array antenna excited by arbitrarily located sources. An original modal formulation based on the Floquet analysis procedure is proposed utilizing the periodic walls along x, y, and z-axes, where the analysis region in the spectral domain is reduced to the Brillouin zone. Here, a good idea is provided to enforce the given boundary conditions for obtaining an integral equation formalism developed through Galerkin's method for solving periodic volumic structure (e.g. 3-D regular structure in the cubic grid). The interaction between cells in 3-D geometry (lattice) could be deduced using a novel expression of mutual coupling. However, it is possible to obtain it explicitly by the mean of Fourier transform and its inverse. Then, it is proven how Floquet analysis can be employed to study a 3D-finite array configuration with arbitrary amplitude and linear phase distribution along x, y, and z directions, including mutual interaction effects. To deal with the real hole 3D array configuration, a superposition theorem is suggested to describe the electromagnetic behavior in the spatial domain. For modeling the given 3D antenna array, one numerical method is adopted: The moment method combined with an equivalent circuit (MoM-GEC). An important gain in the running time and memory used would be achieved using Floquet analysis in comparison with other spatial conventional methods (especially, when the number of cells increases by adding the second and third directions).
Citation
Bilel Hamdi, and Taoufik Aguili, "New Theoretical Floquet Modal Analysis to Study 3-d Finite Almost Periodic Structures with Coupled Cells," Progress In Electromagnetics Research Letters, Vol. 95, 163-169, 2021.
doi:10.2528/PIERL20110406
References

1. Ona, R., R. Tascone, and R. Zich, "Three-dimensional periodic arrays of thin conductors," Electromagnetics, Vol. 7, No. 2, 185-203, 1987 (Published online: Feb. 01, 2007).
doi:10.1080/02726348708908178

2. Neto, A., S. Maci, G. Vecchi, and M. Sabbadini, "A truncated floquet wave diffraction method for the full-wave analysis of large phased arrays — Part II: Generalization to 3-D cases," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 3, Mar. 2000.

3. Yaghjian, A. D., "Definition of an EM continuum and boundary conditions for electric quadrupolar continua," Proceedings of the 2013 International Symposium on Electromagnetic Theory, 2013.

4. Hamdi, B., T. Aguili, N. Raveu, and H. Baudrand, "Calculation of the mutual coupling parameters and their effects in 1-D planar almost periodic structures," Progress In Electromagnetics Research B, Vol. 59, 269-289, 2014.
doi:10.2528/PIERB14021105

5. Hamdi, B., T. Aguili, and H. Baudrand, "Floquet modal analysis to modelize and study 2-D planar almost periodic structures in finite and infinite extent with coupled motifs," Progress In Electromagnetics Research B, Vol. 62, 63-86, 2015.
doi:10.2528/PIERB14111602

6. Mekkioui, Z. and H. Baudrand, "2-D bi-periodic centered-fed microstrip Leaky-Wave Antenna (LWA) analysis by a source modal decomposition in spectral domain," IET Microwaves, Antennas and Propagation, Vol. 3, No. 7, Oct. 2009.

7. Baudrand, H., M. Titaouine, N. Raveu, and G. Fontgland, "Electromagnetic modeling of planar almost periodic structures," SBMOI/IEEE MTT-S International Microwave and Optoelectronics Conference, 2009.

8. Bhattacharyya, K. A., Phased Array Antennas: Floquet Analysis, Synthesis, BFNs, and Active Array Systems, Wiley and Sons, Mar. 2006.

9. Nader, B. L., H. Bilel, and A. Taoufik, "Electronically steerable radiation pattern of coupled periodic antenna used floquet analysis," ACES Journal, Vol. 34, No. 2, Feb. 2019.

10. Craeye, C. and D. G. Ovejero, "A review on array mutual coupling analysis," Radio Science, Vol. 46, RS2012, 2011.
doi:10.1029/2010RS004518

11. Shore, R. A. and A. D. Yaghjian, "Traveling waves on two- and three-dimensional periodic arrays of lossless scatteres," Radio Science, Vol. 42, RS6S21, 2007.

12. Campione, S. and F. Capolino, "Ewald method for 3D periodic dyadic Green’s functions and complex modes in composite materials made of spherical particles under the dual dipole approximation," Radio Science, Vol. 47, RS0N06, 2012.

13. Campione, S., M. B. Sinclair, and F. Capolino, "Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at midinfrared frequencies," Photonics and Nanostructures — Fundamentals and Applications, Vol. 11, No. 4, 423-435, 2013.
doi:10.1016/j.photonics.2013.07.013

14. Campione, S. and F. Capolino, "Electromagnetic coupling and array packing induce exchange of dominance on complex modes in 3D periodic arrays of spheres with large permittivity," Journal of the Optical Society of America B, Vol. 33, No. 2, 261, 2016.
doi:10.1364/JOSAB.33.000261

15. Sultan, K. S., H. H. Abdullah, and E. A. Abdallah, "Method of moments analysisforantennaarrays with optimum memory and time consumption," PIERS Proceedings, 1353-1356, Kuala Lumpur, Malaysia, Mar. 27–30, 2012.

16. Ammar, N., T. Aguili, and H. Baudrand, "Analysis of multilayered cylindrical structures using a full wave method," Progress In Electromagnetics Research, Vol. 85, 425-438, 2008.
doi:10.2528/PIER08091803

17. N'Gongo, R. S. H. Baudrand, "Application of wave concept iterative procedure in planar circuits," Recent Res. Devel. Microwave Theory and Technique, Vol. 1, 187-197, 1999.