Vol. 100
Latest Volume
All Volumes
PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-15
Computation of Oscillation Frequency in a Plasma Filled Rectangular Cavity Resonator
By
Progress In Electromagnetics Research M, Vol. 100, 127-140, 2021
Abstract
Oscillation frequency in a plasma filled rectangular dielectric resonator antenna is computed. Perturbation method for solving differential equation is applied to find oscillation frequencies of dielectric cavity resonator. Equilibrium distribution function of collisionless Boltzmann equation is slightly perturbed. Distribution function of plasma is perturbed by altering external applied electromagnetic field. Perturbed Boltzmann equation satisfies with the relaxation time approximation used for the collision. The resulting Maxwell equations are subjected to appropriate boundary condition. Multilinear algebra tensor decomposition technique is done to find eigenfrequincies of cavity resonator antenna considered in this paper. A simulation study of a ionized gas plasma antenna is done on HFSS. Numerically calculated oscillation frequency is cross verified with HFSS result and found in good agreement.
Citation
Pragya Shilpi, Dharmendra Upadhyay, and Harish Parthasarathy, "Computation of Oscillation Frequency in a Plasma Filled Rectangular Cavity Resonator," Progress In Electromagnetics Research M, Vol. 100, 127-140, 2021.
doi:10.2528/PIERM20111201
References

1. Erden, F., "Evolutionary approach to solve an novel time-domain cavity problem," Journal of Latex Class Files, Vol. 14, No. 8, August 2015.

2. Yaduvanshi, R. S. and H. Parthasarathy, Rectangular Dielectric Resonator Antennas: Theory and Design, Springer, September 2015.

3. Epstein, I. L. and M. Gavrilovic, "The study of a homogeneous column of argon plasma at a pressure of 0.5 torr, generated by means of the Beenakker's cavity," The European Physical Journal D, 2014.

4. Moskvitinaa, Y. K. and G. I. Zaginaylova, "Effect of background plasma on electromagnetic properties of coaxial gyrotron cavity," Technical Physics, Vol. 59, No. 7, 1065-1071, 2014.
doi:10.1134/S1063784214070214

5. Liu, S., Z. He, S. Cheng, and S. Y. Zhong, "Symplectic finite-difference time-domain scheme based on decomposition technique of the exponential operator for plasma media," IET Microwaves, Antennas and Propagation, Vol. 10, No. 2, 129-133, 2016.
doi:10.1049/iet-map.2015.0464

6. Yuan, J. and G. Lin, "Design of compact circular resonator for electrodeless microwave plasma lamp," Electronics Letters, Vol. 49, No. 16, August 2013.
doi:10.1049/el.2013.1325

7. Buchel, A., "Relaxation time of non-conformal plasma," Physics Letters B, 200-203, 2009.
doi:10.1016/j.physletb.2009.10.007

8. Shuvalov, V. A. and A. I. Priimak, "A probe diagnostics for high-speed flows of rarefied partially dissociated plasma," Instruments and Experimental Techniques, Vol. 50, No. 3, 370-378, 2007.
doi:10.1134/S002044120703013X

9. Melrose, D. B., "Kinetic plasma physics," Swiss Society for Astrophysics and Astronomy, Vol. 24, 113-223, Springer, 1994.

10. Marsch, E., "Kinetic physics of the solar wind plasma," Physics and Chemistry in Space - Space and Solar Physics, Vol. 21, 1991.

11. Xiao, S. and Y. L. Mo, "Study of open cavity filled with plasma density grating," IEEE Transactions on Plasma Science, Vol. 27, No. 5, 1495-1500, October 1999.
doi:10.1109/27.799831

12. Oleinik, A. M., "Dwell time in the excitation zone for particles blown into the plasma of a spark discharge,", 224-225, Consultants Bureau, a division of Plenum Publishing Corporation, 227 West-7th Street, New York, N. Y. 10011, 1972.

13. Yakimenko, I. P. and T. R. Kelner, "The natural frequencies of cylindrical cavities with a magnetoactive plasma," Radiophysics and Quantum Electronics, Vol. 10, No. 6, 815-824, 1967.
doi:10.1007/BF01089854

14. Safari, S. and B. Jazi, "The plasma background effect on time growth rate of terahertz hybrid modes in an elliptical metallic waveguide with two electron beams as energy source," IEEE Transactions on Plasma Science, Vol. 44, No. 10, 2356-2365, October 2016.
doi:10.1109/TPS.2016.2599500

15. Timofeev, A. V., "Time of relaxation in dusty plasma model," Journal of Physics: Conference, Series 653, 012137, 2015.

16. Singh, S. and M. V. Kartikeyan, "Full wave analysis of plasma loaded coaxial gyrotron cavity with triangular corrugations on the insert," IEEE Transactions on Electron Devices, Vol. 64, No. 5, 2369-2375, 2017.
doi:10.1109/TED.2017.2674676

17. Singh, S. and M. V. Kartikeyan, "Analysis of plasma loaded conventional and coaxial cavity with wedge-shaped corrugations on the insert," IEEE Transactions on Electron Devices, Vol. 65, No. 6, 2614-2619, 2018.
doi:10.1109/TED.2018.2824340

18. Bittencourt, J. A., Fundamentals of Plasma Physics, 3rd Ed., Springer International Addition, 2003.

19. Balanis, C. A., Antenna Theory: Analysis and Design, 2nd Ed., Wille Edition, 1938.

20. Francis, F. C., Introduction to Plasma Physics and Controlled Fusion, 2nd Ed., Springer International Addition, 1974.

21. Podolsky, V. and A. Semnani, "Experimental and numerical studies of a tunable plasma antenna sustained by RF power," IEEE Transactions on Plasma Science, Vol. 48, No. 10, 3524-3534, Oct. 2020.
doi:10.1109/TPS.2020.3023422

22. Kalynov, Y. K. and A. V. Savilov, "Competition of oscillations at different cyclotron harmonics in the subterahertz large-orbit gyrotron," IEEE Transactions on Electron Devices, Vol. 67, No. 9, 3795-3801, Sept. 2020.
doi:10.1109/TED.2020.3009617

23. Cohen, G. and M. Galperin, "Green's function methods for single molecule junctions," AIP, The Journal of Chemical Physics, Vol. 152, 090901, 2020.
doi:10.1063/1.5145210