1. Grys, D. B., R. Storch, and T. Musch, "A multisection ultra wideband directional coupler in multilayer broadside coupled stripline technology," IEEE Microwave Conf., 39-42, Bochum, Germany, 2016. Google Scholar
2. Kim, I. B., S. K. Kim, W. Mohyuddin, H. C. Choi, and K. W. Kim, "Design of wideband directional couplers using three types of broadside coupled-lines," IEEE Int. Symp. on Antennas and Propag., 932-933, Okinawa, Japan, 2016. Google Scholar
3. Kim, S. G. and K. Chang, "Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 9, 2148-2152, 2004.
doi:10.1109/TMTT.2004.834165 Google Scholar
4. Moghaddam, E. S. and A. Ahmadi, "180˚ hybrid using a novel planar balun on suspended substrate for beam forming network applications," Int. J. RF Microw. Comput.-Aided Eng., Vol. 9, e22280, 2020. Google Scholar
5. Huang, K. F. and C. K. Tzuang, "Characteristics and design of broadside-coupled transmission line at a higher order leaky mode," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 440-447, 2003.
doi:10.1109/TMTT.2002.807839 Google Scholar
6. Lin, S., H. Cui, L.Wu, W.Wang, and X. Sun, "Design of broadside-coupled parallel line millimetre-wave filters by standard 0.18-μm complimentary metal oxide semiconductor technology," IET Microw. Antennas Propag., Vol. 6, No. 1, 72-78, 2012.
doi:10.1049/iet-map.2011.0024 Google Scholar
7. Abbosh, A. M., "Ultra-wideband phase shifters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1935-1941, 2007.
doi:10.1109/TMTT.2007.904051 Google Scholar
8. Winslow, T. A., "A novel broadside coupler model for MMIC impedance transformer design," IEEE 41st European Microwave Conf., 309-312, Manchester, UK, 2011. Google Scholar
9. Wong, M. F., V. F. Hanna, O. Picon, and H. Baudrand, "Analysis and design of slot-coupled directional couplers between double-sided substrate microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 12, 2123-2129, 1991.
doi:10.1109/22.106554 Google Scholar
10. Abbosh, A. M., "Analytical closed-form solutions for different configurations of parallel-coupled microstrip lines," IET Microw. Antennas Propag., Vol. 3, No. 1, 137-147, 2009.
doi:10.1049/iet-map:20070308 Google Scholar
11. Zhu, N. H., W. Qiu, Y.-B. Pun, and P.-S. Chung, "Analysis of two-layer planar transmission lines with the point matching method," Int. J. Eletron., Vol. 80, No. 1, 99-105, 1996.
doi:10.1080/002072196137624 Google Scholar
12. Übeyli, E. D. and I. Güler, "Adaptive neuro-fuzzy inference system to compute quasi-TEM characteristic parameters of microshield lines with practical cavity sidewall profiles," Neurocomputing, Vol. 70, No. 1-3, 296-304, 2006.
doi:10.1016/j.neucom.2006.01.002 Google Scholar
13. Zitouni, A., H. Bourdoucen, and T. Nait Djoudi, "Quasi-static MoL-based approach for the analysis of multilayer transmission line structures," The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 10, No. 4, 209-216, 1997.
doi:10.1002/(SICI)1099-1204(199707)10:4<209::AID-JNM268>3.0.CO;2-I Google Scholar
14. Yamashita, E. and K. Atsuki, "Strip line with rectangular outer conductor and three dielectric layers," IEEE Trans. Microw. Theory Tech., Vol. 18, No. 5, 238-244, 1970.
doi:10.1109/TMTT.1970.1127205 Google Scholar
15. Liu, J., J. Yang, and A. U. Zaman, "Analytical solutions to characteristic impedance and losses of inverted microstrip gap waveguide based on variational method," IEEE Trans. Microw. Theory Tech., Vol. 66, No. 12, 7049-7057, 2018.
doi:10.1109/TMTT.2018.2871180 Google Scholar
16. Pantic-Tanner, Z., G. Mavronikolas, and R. Mittra, "A numerical absorbing boundary condition for quasi-TEM analysis of microwave transmission lines using the finite-element method," Microw. Opt. Technol. Lett., Vol. 9, No. 3, 134-136, 1995.
doi:10.1002/mop.4650090308 Google Scholar
17. Musa, S. M. and M. N. Sadiku, "Finite element approach of shielded, suspended and inverted microstrip lines," Bull. Electr. Eng. Inform., Vol. 2, No. 1, 1-10, 2013. Google Scholar
18. Xiao, F., M. Norgren, and S. He, "Quasi-TEM approach of coupled-microstrip lines and its application to the analysis of microstrip filters," Int. J. RF Microw. Comput.-Aided Eng., Vol. 22, No. 1, 131-139, 2012.
doi:10.1002/mmce.20592 Google Scholar
19. Tran, M. and C. Nguyen, "Modified broadside-coupled microstrip lines suitable for MIC and MMIC applications and a new class of broadside-coupled band-pass filters," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 8, 1336-1342, 1993.
doi:10.1109/22.241672 Google Scholar
20. Khalaj-Amirhosseini, M., "Determination of capacitance and conductance matrices of lossy shielded coupled microstrip transmission lines," Progress In Electromagnetics Research, Vol. 50, 267-278, 2005.
doi:10.2528/PIER04061601 Google Scholar
21. Tomar, R., Y. M. Antar, and P. Bhartia, "Computer-aided-design (CAD) of suspended-substrate microstrips: An overview," Int. J. RF Microw. Comput.-Aided Eng., Vol. 15, No. 1, 44-55, 2005.
doi:10.1002/mmce.20050 Google Scholar
22. Riabi, M. L., M. Ahmadpanah, H. Benzina, H. Baudrand, and V. FouadHanna, "Performance of the MLSBR using efficient weighting functions for planar structures," IET Microw. Antennas Propag., Vol. 142, No. 4, 364-368, 1995.
doi:10.1049/ip-map:19952004 Google Scholar
23. Sakli, H., H. Benzina, T. Aguli, and J.-W. Tao, "A rigorous study of some planar structures with longitudinally magnetized ferrite by a modified LSBR method," International Journal of Microwave and Optical Technology, Vol. 4, 358-367, 2009. Google Scholar
24. Horno, M., F. L. Mesa, F. Medina, and R. Marques, "Quasi-TEM analysis of multilayered, multiconductor coplanar structures with dielectric and magnetic anisotropy including substrate losses," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1059-1068, 1990.
doi:10.1109/22.57331 Google Scholar
25. Bahl, I. J. and P. Bhartia, "Analysis of broadside coupled microstriplines," Arch. Elek. Ubertragung., Vol. 34, No. 5, 223-226, May 1980. Google Scholar
26. Bhartia, P. and P. Pramanick, "Computer-aided design models for broadside-coupled striplines and millimeter-wave suspended substrate microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 3, No. 11, 1476-1481, 1988.
doi:10.1109/22.8910 Google Scholar
27. Kumar, R., "Design model for broadside-coupled suspended substrate stripline for microwave and millimeter-wave applications," Microw. Opt. Technol. Lett., Vol. 42, No. 4, 328-331, 2004.
doi:10.1002/mop.20293 Google Scholar
28. Musa, S. M. and M. N. Sadiku, "Modeling of shielded broadside-coupled substrate striplines," Microw. Opt. Technol. Lett., Vol. 51, No. 1, 9-13, 2009.
doi:10.1002/mop.23960 Google Scholar
29. Bhat, B. and S. K. Koul, Stripline Like Transmission Lines for Microwave Integrated Circuits, 332-961, Wiley, 1989.
30. Staszek, K., K. Wincza, and S. Gruszczynski, "Rigorous approach for design of differential coupled-line directional couplers applicable in integrated circuits and substrate-embedded networks," Nature Scientific Reports, Vol. 6, 25071, 2016.
doi:10.1038/srep25071 Google Scholar
31. https://doc.comsol.com/5.4/doc/com.comsol.help.acdc/ACDCModuleUsersGuide.pdf.