1. Alexander, N. E., B. Alderman, F. Allona, et al. "TeraSCREEN: Multi-frequency multi-mode Terahertz screening for border checks," Passive and Active Millimeter-Wave Imaging XVII, Vol. 9078, 907802, International Society for Optics and Photonics, 2014. Google Scholar
2. Hirata, A., T. Kosugi, H. Takahashi, et al. "120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 1937-1944, 2006.
doi:10.1109/TMTT.2006.872798 Google Scholar
3. Joyce, H. J., C. J. Docherty, Q. Gao, et al. "Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy," Nanotechnology, Vol. 24, No. 21, 214006, 2013.
doi:10.1088/0957-4484/24/21/214006 Google Scholar
4. Yang, X., X. Zhao, K. Yang, et al. "Biomedical applications of terahertz spectroscopy and imaging," Trends in Biotechnology, Vol. 34, No. 10, 810-824, 2016.
doi:10.1016/j.tibtech.2016.04.008 Google Scholar
5. Xie, W., Z. C. Wang, J. Luo, et al. "Three dimensional nonlinear analysis of a single-grating rectangular waveguide Cerenkov maser," Physics of Plasmas, Vol. 22, No. 4, 042307, 2015.
doi:10.1063/1.4918338 Google Scholar
6. Mineo, M. and C. Paoloni, "Comparison of THz backward wave oscillators based on corrugated waveguides," Progress In Electromagnetics Research, Vol. 30, 163-171, 2012.
doi:10.2528/PIERL12013107 Google Scholar
7. He, T., Z. L. Wang, X. Li, et al. "Study on silicon-based conformal microstrip angular log-periodic meander line traveling wave tube," Progress In Electromagnetics Research, Vol. 75, 29-37, 2018.
doi:10.2528/PIERM18090703 Google Scholar
8. Lu, F., M. Grieser, C. Zhang, et al. "3-D nonlinear theory for sheet-beam folded-waveguide traveling-wave tubes," IEEE Transactions on Electron Devices, Vol. 65, No. 11, 5103-5110, 2018.
doi:10.1109/TED.2018.2871848 Google Scholar
9. Zhang, Z., J. Luo, Z. Zhang, et al. "S-band Klystron with 300 MHz bandwidth at 850 kW peak power and 20 kW average power," Progress In Electromagnetics Research, Vol. 103, 177-186, 2020.
doi:10.2528/PIERC20032701 Google Scholar
10. Glyavin, M. Y., A. G. Luchinin, G. S. Nusinovich, et al. "A 670 GHz gyrotron with record power and efficiency," Applied Physics Letters, Vol. 101, No. 15, 153503, 2012.
doi:10.1063/1.4757290 Google Scholar
11. Zhang, X., R. Zhang, and Y. Wang, "Research on a high-order mode multibeam extended-interaction oscillator with coaxial structure," IEEE Transactions on Plasma Science, Vol. 48, No. 6, 1902-1909, 2020.
doi:10.1109/TPS.2020.2987042 Google Scholar
12. Levin, C. Y., A. Y. Kirichenko, A. I. Borodkin, et al. "The clinotron," 1992 22nd European Microwave Conference, Vol. 1, 603-607, IEEE, 1992.
doi:10.1109/EUMA.1992.335771 Google Scholar
13. Schunemann, K. and D. M. Vavriv, "Theory of the clinotron: A grating backward-wave oscillator with inclined electron beam," IEEE Transactions on Electron Devices, Vol. 46, No. 11, 2245-2252, 1999.
doi:10.1109/16.796302 Google Scholar
14. Vavriv, D. M., "Potential of the Clinotron for THz-generation," AIP Conference Proceedings, Vol. 807, No. 1, 367-372, American Institute of Physics, 2006. Google Scholar
15. Andrushkevich, V. S., Y. G. Gamayunov, and E. V. Patrusheva, "A nonlinear clinotron theory," Journal of Communications Technology and Electronics, Vol. 55, No. 3, 330-336, 2010.
doi:10.1134/S1064226910030125 Google Scholar
16. Sattorov, M., E. Khutoryan, K. Lukin, et al. "Improved efficiency of backward-wave oscillator with an inclined electron beam," IEEE Transactions on Electron Devices, Vol. 60, No. 1, 458-463, 2012.
doi:10.1109/TED.2012.2225837 Google Scholar
17. Xi, H., Z. He, J. Wang, et al. "A continuous-wave clinotron at 0.26 THz with sheet electron beam," Physics of Plasmas, Vol. 24, No. 3, 033105, 2017.
doi:10.1063/1.4977809 Google Scholar
18. Ponomarenko, S. S., S. A. Kishko, V. V. Zavertanniy, et al. "400-GHz continuous-wave clinotron oscillator," IEEE Transactions on Plasma Science, Vol. 41, No. 1, 82-86, 2012.
doi:10.1109/TPS.2012.2226247 Google Scholar
19. Gong, Y., H. Yin, L. Yue, et al. "A 140-GHz two-beam overmoded folded-waveguide traveling-wave tube," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 847-851, 2011.
doi:10.1109/TPS.2010.2100410 Google Scholar
20. Gee, A. and Y. M. Shin, "Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure," Physics of Plasmas, Vol. 20, No. 7, 073106, 2013.
doi:10.1063/1.4813800 Google Scholar
21. Hu, Y. and J. Feng, "Research of kilowatts W-band overmoded TWT," 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), 1-3, IEEE, 2015. Google Scholar
22. Shi, N., H. Wang, D. Xu, et al. "Study of 220GHz dual-beam overmoded photonic crystal-loaded folded waveguide TWT," IEEE Transactions on Plasma Science, Vol. 47, No. 6, 2971-2978, 2019.
doi:10.1109/TPS.2019.2914164 Google Scholar
23. Shu, G. X., G. Liu, and Z. F. Qian, "Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams," Optics Express, Vol. 26, No. 7, 8040-8048, 2018.
doi:10.1364/OE.26.008040 Google Scholar
24. Shu, G., G. Liu, L. Chen, et al. "Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams," Journal of Physics D: Applied Physics, Vol. 51, No. 5, 055107, 2018.
doi:10.1088/1361-6463/aaa20e Google Scholar
25. Zhang, F., Z. Zhang, D. Gao, et al. "A 3-D frequency-domain nonlinear theory of the BWO with an inclined rectangular electron beam," IEEE Transactions on Plasma Science, Vol. 48, No. 9, 3040-3046, 2020.
doi:10.1109/TPS.2020.3013650 Google Scholar
26. Xi, H., J. Wang, Z. He, et al. "Continuous-wave Y-band planar BWO with wide tunable bandwidth," Scientific Reports, Vol. 8, No. 1, 1-7, 2018. Google Scholar
27. Chang, C., Z. Xiong, L. Guo, et al. "Compact four-way microwave power combiner for high power applications," Journal of Applied Physics, Vol. 115, No. 21, 214502, 2014.
doi:10.1063/1.4880741 Google Scholar
28. Chang, C., X. Zhu, G. Liu, J. Fang, R. Xiao, C. Chen, H. Shao, J. Li, H. Huang, Q. Zhang, and Z.-Q. Zhang, "Design and experiments of the GW high-power microwave feed horn," Progress In Electromagnetics Research, Vol. 101, 157-171, 2010.
doi:10.2528/PIER10010202 Google Scholar
29. Kirilenko, A. A., L. A. Rud, and V. I. Tkachenko, "Nonsymmetrical H-plane corners for TE10-TEq0 mode conversion in rectangular waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2471-2477, 2006.
doi:10.1109/TMTT.2006.875798 Google Scholar
30. Liu, G., Y. Wang, Y. Pu, et al. "Design and microwave measurement of a novel compact TE0n-TE1n' mode converter," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4108-4116, 2016.
doi:10.1109/TMTT.2016.2608770 mode converter&publisher=IEEE Transactions on Microwave Theory and Techniques&volume=64&issue=12&year=2016&doi=10.1109/TMTT.2016.2608770' target='_blank'> Google Scholar
31. Shu, G., Z. Cai, Y. Li, et al. "Wideband rectangular TE10 to TE0n mode converters for terahertz-band high-order overmoded planar slow-wave structures," IEEE Transactions on Electron Devices, Vol. 67, No. 3, 1259-1265, 2020.
doi:10.1109/TED.2020.2968167 Google Scholar
32. Shu, G., Z. Qian, and W. He, "Design and measurement of an H-band rectangular TE10 to TE20 mode converter," IEEE Access, Vol. 8, 37242-37249, 2020.
doi:10.1109/ACCESS.2020.2974819 Google Scholar
33. Zhang, Q., C. W. Yuan, and L. Liu, "Theoretical design and analysis for TE20-TE10 rectangular waveguide mode converters," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 4, 1018-1026, 2012.
doi:10.1109/TMTT.2011.2182206 Google Scholar
34. Pozar, D. M., Microwave Engineering, 256-261, John Wiley & Sons, 2011.