Vol. 110
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-03-07
Simulation Study of a High-Order Mode BWO with Multiple Inclined Rectangular Electron Beams
By
Progress In Electromagnetics Research C, Vol. 110, 213-227, 2021
Abstract
A backward wave oscillator (BWO) operating at the high-order mode (HOM) with multiple inclined rectangular electron beams (IRBs) is presented in this article. The BWO operating at the HOM with multiple IRBs (HOM IRB BWO) is driven by multiple IRBs. Compared with typical BWOs, the slow wave structure of the HOM IRB BWO is an overmoded metal-grating rectangular waveguide (OGRWG). The mode competition of the slow-wave device operating at the HOM is analyzed according to the ohmic losses of different modes of the OGRWG slow wave structure and multiple beams exciting. The analysis is verified by simulation. Two kinds of HOM-fundamental mode converters (MCs) are designed for converting the HOM generated by the HOM IRB BWO into the fundamental mode. The beam-wave interaction of the HOM IRB BWOs with the HOM-fundamental MC is studied. The results show that the mode competition does not occur; frequency spectrums of output signals are pure; the HOM is converted into the fundamental mode effectively.
Citation
Fengzhen Zhang, Weilong Wang, Zhaochuan Zhang, and Dongping Gao, "Simulation Study of a High-Order Mode BWO with Multiple Inclined Rectangular Electron Beams," Progress In Electromagnetics Research C, Vol. 110, 213-227, 2021.
doi:10.2528/PIERC21010401
References

1. Alexander, N. E., B. Alderman, F. Allona, et al. "TeraSCREEN: Multi-frequency multi-mode Terahertz screening for border checks," Passive and Active Millimeter-Wave Imaging XVII, Vol. 9078, 907802, International Society for Optics and Photonics, 2014.

2. Hirata, A., T. Kosugi, H. Takahashi, et al. "120-GHz-band millimeter-wave photonic wireless link for 10-Gb/s data transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 5, 1937-1944, 2006.
doi:10.1109/TMTT.2006.872798

3. Joyce, H. J., C. J. Docherty, Q. Gao, et al. "Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy," Nanotechnology, Vol. 24, No. 21, 214006, 2013.
doi:10.1088/0957-4484/24/21/214006

4. Yang, X., X. Zhao, K. Yang, et al. "Biomedical applications of terahertz spectroscopy and imaging," Trends in Biotechnology, Vol. 34, No. 10, 810-824, 2016.
doi:10.1016/j.tibtech.2016.04.008

5. Xie, W., Z. C. Wang, J. Luo, et al. "Three dimensional nonlinear analysis of a single-grating rectangular waveguide Cerenkov maser," Physics of Plasmas, Vol. 22, No. 4, 042307, 2015.
doi:10.1063/1.4918338

6. Mineo, M. and C. Paoloni, "Comparison of THz backward wave oscillators based on corrugated waveguides," Progress In Electromagnetics Research, Vol. 30, 163-171, 2012.
doi:10.2528/PIERL12013107

7. He, T., Z. L. Wang, X. Li, et al. "Study on silicon-based conformal microstrip angular log-periodic meander line traveling wave tube," Progress In Electromagnetics Research, Vol. 75, 29-37, 2018.
doi:10.2528/PIERM18090703

8. Lu, F., M. Grieser, C. Zhang, et al. "3-D nonlinear theory for sheet-beam folded-waveguide traveling-wave tubes," IEEE Transactions on Electron Devices, Vol. 65, No. 11, 5103-5110, 2018.
doi:10.1109/TED.2018.2871848

9. Zhang, Z., J. Luo, Z. Zhang, et al. "S-band Klystron with 300 MHz bandwidth at 850 kW peak power and 20 kW average power," Progress In Electromagnetics Research, Vol. 103, 177-186, 2020.
doi:10.2528/PIERC20032701

10. Glyavin, M. Y., A. G. Luchinin, G. S. Nusinovich, et al. "A 670 GHz gyrotron with record power and efficiency," Applied Physics Letters, Vol. 101, No. 15, 153503, 2012.
doi:10.1063/1.4757290

11. Zhang, X., R. Zhang, and Y. Wang, "Research on a high-order mode multibeam extended-interaction oscillator with coaxial structure," IEEE Transactions on Plasma Science, Vol. 48, No. 6, 1902-1909, 2020.
doi:10.1109/TPS.2020.2987042

12. Levin, C. Y., A. Y. Kirichenko, A. I. Borodkin, et al. "The clinotron," 1992 22nd European Microwave Conference, Vol. 1, 603-607, IEEE, 1992.
doi:10.1109/EUMA.1992.335771

13. Schunemann, K. and D. M. Vavriv, "Theory of the clinotron: A grating backward-wave oscillator with inclined electron beam," IEEE Transactions on Electron Devices, Vol. 46, No. 11, 2245-2252, 1999.
doi:10.1109/16.796302

14. Vavriv, D. M., "Potential of the Clinotron for THz-generation," AIP Conference Proceedings, Vol. 807, No. 1, 367-372, American Institute of Physics, 2006.

15. Andrushkevich, V. S., Y. G. Gamayunov, and E. V. Patrusheva, "A nonlinear clinotron theory," Journal of Communications Technology and Electronics, Vol. 55, No. 3, 330-336, 2010.
doi:10.1134/S1064226910030125

16. Sattorov, M., E. Khutoryan, K. Lukin, et al. "Improved efficiency of backward-wave oscillator with an inclined electron beam," IEEE Transactions on Electron Devices, Vol. 60, No. 1, 458-463, 2012.
doi:10.1109/TED.2012.2225837

17. Xi, H., Z. He, J. Wang, et al. "A continuous-wave clinotron at 0.26 THz with sheet electron beam," Physics of Plasmas, Vol. 24, No. 3, 033105, 2017.
doi:10.1063/1.4977809

18. Ponomarenko, S. S., S. A. Kishko, V. V. Zavertanniy, et al. "400-GHz continuous-wave clinotron oscillator," IEEE Transactions on Plasma Science, Vol. 41, No. 1, 82-86, 2012.
doi:10.1109/TPS.2012.2226247

19. Gong, Y., H. Yin, L. Yue, et al. "A 140-GHz two-beam overmoded folded-waveguide traveling-wave tube," IEEE Transactions on Plasma Science, Vol. 39, No. 3, 847-851, 2011.
doi:10.1109/TPS.2010.2100410

20. Gee, A. and Y. M. Shin, "Gain analysis of higher-order-mode amplification in a dielectric-implanted multi-beam traveling wave structure," Physics of Plasmas, Vol. 20, No. 7, 073106, 2013.
doi:10.1063/1.4813800

21. Hu, Y. and J. Feng, "Research of kilowatts W-band overmoded TWT," 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), 1-3, IEEE, 2015.

22. Shi, N., H. Wang, D. Xu, et al. "Study of 220GHz dual-beam overmoded photonic crystal-loaded folded waveguide TWT," IEEE Transactions on Plasma Science, Vol. 47, No. 6, 2971-2978, 2019.
doi:10.1109/TPS.2019.2914164

23. Shu, G. X., G. Liu, and Z. F. Qian, "Simulation study of a high-order mode terahertz radiation source based on an orthogonal grating waveguide and multiple sheet electron beams," Optics Express, Vol. 26, No. 7, 8040-8048, 2018.
doi:10.1364/OE.26.008040

24. Shu, G., G. Liu, L. Chen, et al. "Terahertz backward wave radiation from the interaction of high-order mode and double sheet electron beams," Journal of Physics D: Applied Physics, Vol. 51, No. 5, 055107, 2018.
doi:10.1088/1361-6463/aaa20e

25. Zhang, F., Z. Zhang, D. Gao, et al. "A 3-D frequency-domain nonlinear theory of the BWO with an inclined rectangular electron beam," IEEE Transactions on Plasma Science, Vol. 48, No. 9, 3040-3046, 2020.
doi:10.1109/TPS.2020.3013650

26. Xi, H., J. Wang, Z. He, et al. "Continuous-wave Y-band planar BWO with wide tunable bandwidth," Scientific Reports, Vol. 8, No. 1, 1-7, 2018.

27. Chang, C., Z. Xiong, L. Guo, et al. "Compact four-way microwave power combiner for high power applications," Journal of Applied Physics, Vol. 115, No. 21, 214502, 2014.
doi:10.1063/1.4880741

28. Chang, C., X. Zhu, G. Liu, J. Fang, R. Xiao, C. Chen, H. Shao, J. Li, H. Huang, Q. Zhang, and Z.-Q. Zhang, "Design and experiments of the GW high-power microwave feed horn," Progress In Electromagnetics Research, Vol. 101, 157-171, 2010.
doi:10.2528/PIER10010202

29. Kirilenko, A. A., L. A. Rud, and V. I. Tkachenko, "Nonsymmetrical H-plane corners for TE10-TEq0 mode conversion in rectangular waveguides," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2471-2477, 2006.
doi:10.1109/TMTT.2006.875798

30. Liu, G., Y. Wang, Y. Pu, et al. "Design and microwave measurement of a novel compact TE0n-TE1n' mode converter," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 12, 4108-4116, 2016.
doi:10.1109/TMTT.2016.2608770

31. Shu, G., Z. Cai, Y. Li, et al. "Wideband rectangular TE10 to TE0n mode converters for terahertz-band high-order overmoded planar slow-wave structures," IEEE Transactions on Electron Devices, Vol. 67, No. 3, 1259-1265, 2020.
doi:10.1109/TED.2020.2968167

32. Shu, G., Z. Qian, and W. He, "Design and measurement of an H-band rectangular TE10 to TE20 mode converter," IEEE Access, Vol. 8, 37242-37249, 2020.
doi:10.1109/ACCESS.2020.2974819

33. Zhang, Q., C. W. Yuan, and L. Liu, "Theoretical design and analysis for TE20-TE10 rectangular waveguide mode converters," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, No. 4, 1018-1026, 2012.
doi:10.1109/TMTT.2011.2182206

34. Pozar, D. M., Microwave Engineering, 256-261, John Wiley & Sons, 2011.