1. Chu, K. R., "The electron cyclotron maser," Rev. Mod. Phys., Vol. 6, No. 2, 489-540, Apr. 2004.
doi:10.1103/RevModPhys.76.489 Google Scholar
2. Garven, M., J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, "A gyrotron-traveling-wave tube amplifier experiment with a ceramic loaded interaction region," IEEE Trans. Plasma Sci., Vol. 30, No. 3, 885-893, Apr. 2002.
doi:10.1109/TPS.2002.801650 Google Scholar
3. Du, C. H., T. H. Chang, P. K. Liu, Y. C. Huang, P. X. Jiang, S. X. Xu, Z. H. Geng, B. L. Hao, L. Xiao, G. F. Liu, Z. D. Li, and S. H. Shi, "Design of a W-band gyro-TWT amplifier with a lossy ceramic-loaded circuit," IEEE Trans. on Electron Devices, Vol. 60, No. 7, 2388-2395, Jul. 2013.
doi:10.1109/TED.2013.2264100 Google Scholar
4. Song, H. H., D. B. McDermott, Y. Hirata, L. R. Barnett, C.W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann, "Theory and experiment of a 94 GHz gyrotron traveling-wave amplifier," Plys. Plasma, Vol. 11, No. 5, 2935-2941, May 2004.
doi:10.1063/1.1690764 Google Scholar
5. Yan, R., Y. Luo, G. Liu, and Y. L. Pu, "Design and experiment of a Q-band gyro-TWT loaded with lossy dielectric," IEEE Trans. on Electron Devices, Vol. 59, No. 12, 3612-3617, Dec. 2012.
doi:10.1109/TED.2012.2219584 Google Scholar
6. Yan, R., et al., "Investigation on high average power operations of gyro-TWTs with dielectric-Loaded waveguide circuits," IEEE Trans. on Electron Devices, Vol. 65, No. 7, 3012-3018, Jul. 2018.
doi:10.1109/TED.2018.2836905 Google Scholar
7. He, W., C. R. Donaldson, L. Zhang, K. Ronald, P. McElhinney, and A. W. Cross, "High power wideband gyrotron backward wave oscillator operating towards the terahertz region," Phys. Rev. Lett., Vol. 90, No. 25, 258-302, Jul. 2003. Google Scholar
8. Samsonov, S. V., I. G. Gachev, G. G. Denisov, et al. "Ka-band gyrotron travelling wave tube with the highest continuous wave and average power," IEEE Trans. on Electron Devices, Vol. 61, No. 12, 4264-4267, Dec. 2014.
doi:10.1109/TED.2014.2364623 Google Scholar
9. Samsonov, S. V., G. G. Denisov, I. G. Gachev, and A. A. Bogdashov, "CW operation of a W-band high-gain helical-waveguide gyrotron traveling-wave tube," IEEE Electron Device Letters, Vol. 41, No. 5, 773-776, May 2020.
doi:10.1109/LED.2020.2980572 Google Scholar
10. Rozental, M., et al., "CW multifrequency K-band source based on a helical-waveguide gyro-TWT with delayed feedback," IEEE Trans. on Electron Devices, Vol. 68, No. 1, 330-335, Jan. 2021.
doi:10.1109/TED.2020.3036331 Google Scholar
11. Kim, H. J., E. A. Nanni, M. A. Shapiro, J. R. Sirigiri, P. P. Woskov, and R. J. Temkin, "Amplification of picosecond pulses in a 140-GHz gyrotron-traveling wave tube," Phys. Rev. Lett., Vol. 110, 165101-1-165101-5, Apr. 2013.
doi:10.1103/PhysRevLett.110.017201 Google Scholar
12. Nanni, E. A., S. M. Lewis, M. A. Shapiro, R. G. Griffin, and R. J. Temkin, "Photonic-band-gap traveling-wave gyrotron amplifier," Phys. Rev. Lett., Vol. 111, 235101-1-235101-5, Dec. 2013. Google Scholar
13. Chu, K. R., et al., "Theory and experiment of ultrahigh-gain gyrotron traveling wave amplifier," IEEE Trans. Plasma Sci., Vol. 27, No. 2, 391-404, Apr. 1999.
doi:10.1109/27.772266 Google Scholar
14. Yan, R., Y. Tang, and Y. Luo, "Design and experimental study of a high-gain W-Band gyro-TWT with nonuniform periodic dielectric loaded waveguide," IEEE Trans. on Electron Devices, Vol. 61, No. 7, 2564-2569, Jul. 2014. Google Scholar
15. Yeh, Y. S., C. L. Hung, T. H. Chang, et al. "A study of a terahertz gyrotron traveling-wave amplifier," Plys. Plasma, Vol. 24, 103126, Oct. 2017. Google Scholar
16. Yeh, Y. S., C. L. Hung, T. H. Chang, Y. W. Guo, B. H. Kao, C. H. Chen, and Z. W. Wang, "Low-voltage harmonic multiplying gyrotron traveling-wave amplifier in G band," Plys. Plasma, Vol. 22, 123115, Dec. 2015.
doi:10.1063/1.4938040 Google Scholar
17. Du, C. H., S. Pan, H. Q. Bian, and P. K. Liu, "Time-domain multimode analysis of a terahertz gyro-TWT amplifier," IEEE Trans. on Electron Devices, Vol. 65, No. 4, 1550-1557, Apr. 2014.
doi:10.1109/TED.2018.2808178 Google Scholar
18. Wang, J. X., Y. Luo, Y. Xu, R. Yan, Y. L. Pu, X. Deng, and H. Wang, "Simulation and experiment of a Ku-band gyro-TWT," IEEE Trans. on Electron Devices, Vol. 61, No. 6, 1818-1823, Jun. 2014.
doi:10.1109/TED.2013.2296552 Google Scholar
19. Tang, Y., Y. Luo, Y. Xu, R. Yan, W. Jiang, and Y. Zheng, "Design of a novel dual-band gyro-TWT," IEEE Trans. on Electron Devices, Vol. 61, No. 11, 3858-3863, Nov. 2014.
doi:10.1109/TED.2014.2353851 Google Scholar
20. Rao, W., L. Wang, Y. Wang, C. Fang, G. Liu, W. Jiang, J. X. Wang, Z. W. Wu, F. Y. Zhang, and Y. Luo, "Design of a high-gain X-band megawatt gyrotron traveling-wave tube," IEEE Trans. Plasma Sci., Vol. 47, No. 6, 2818-2822, Jun. 2019.
doi:10.1109/TPS.2019.2915554 Google Scholar
21. Li, H., J. X. Wang, Y. L. Yao, and Y. Luo, "Development of high-efficiency gyro-TWT with a nonuniform dielectric-loaded circuit," IEEE Trans. on Electron Devices, Vol. 66, No. 6, 2764-2770, Jun. 2019.
doi:10.1109/TED.2019.2912761 Google Scholar
22. Li, Y., R. Yan, Y. L. Yao, Q. Q. Yue, X. W. Lin, W. X. Li, G. Liu, and Y. Luo, "Analysis of phase characteristics of gyrotron traveling-wave tubes," IEEE Trans. on Electron Devices, Vol. 67, No. 5, 2170-2175, May 2020.
doi:10.1109/TED.2020.2981165 Google Scholar
23. Harrington, R. F., Time Harmonic Electromagnetic Fields, McGraw-Hill Book Co., 1961.
24. Marcatili, E. A. J. and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell System Tech. J., 1783-1809, Jul. 1964. Google Scholar
25. Lee, C. S., S. W. Lee, and S. L. Chuang, "Normal modes in an overmoded circular waveguide coated with lossy material," IEEE Trans. on Microwave Theory and Techniques, Vol. 34, No. 7, 773-785, Jul. 1986. Google Scholar
26. Du, C. H. and P. K. Liu, Millimeter-wave Gyrotron Traveling-wave Tube Ampliers, 1st Ed., 210, Springer Berlin Heidelberg, 2014.
doi:10.1007/978-3-642-54728-7
27. Shcherbinin, V. I., et al., "HE and EH hybrid waves in a circular dielectric waveguide with an anisotropic impedance surface," Problems of Atomic Science and Technology. Plasma Electronics and New Methods of Acceleration, Vol. 98, 89-93, 2015. Google Scholar
28. Shcherbinin, V. I., G. I. Zaginaylov, and V. I. Tkachenko, "Analogy between circular core-cladding and impedance waveguides and their membrane functions," Progress In Electromagnetics Research M, Vol. 53, 111-120, 2017.
doi:10.2528/PIERM16110902 Google Scholar
29. Gholizadeh, M. and F. Hojjat Kashani, "A new analytical method for calculating the cutoff frequencies of an eccentrically dielectric-loaded circular waveguide," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 5, 453-456, 2016.
doi:10.1109/LMWC.2020.2981925 Google Scholar
30. Liu, G., Y. Wang, Y. L. Pu, et al. "Design and microwave measurement of a novel compact TE0n/TE1n mode converter," IEEE Trans. on Microwave Theory and Techniques, Vol. 64, No. 12, 4108-4116, 2016.
doi:10.1109/TMTT.2016.2608770 Google Scholar