1. Tsai, C. and H. Lee, "Improved design equations of the tapped-line structure for coupled-line filters," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 244-246, April 2007.
doi:10.1109/LMWC.2007.892933 Google Scholar
2. Marın, S., J. D. Martınez, and V. E. Boria, "Realization of filters with improved selectivity using lumped and quasi-lumped terminating half sections," 2017 47th European Microwave Conference (EuMC), 636-639, Nuremberg, 2017.
doi:10.23919/EuMC.2017.8230928 Google Scholar
3. Sanchez-Renedo, M., R. Gomez-Garcia, and R. Loeches-Sanchez, "Microstrip filters with selectivity improvement using the new concept of signal-interference source/load coupling," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-4, Seattle, WA, 2013. Google Scholar
4. Marzah, A. A. and J. S. Aziz, "Design and analysis of high performance and miniaturized bandpass filter using meander line and, Minkowski fractal geometry," 2018 Al-Mansour International Conference on New Trends in Computing, Communication, and Information Technology (NTCCIT) , 12-17, Baghdad, Iraq, 2018. Google Scholar
5. Ma, K., K. S. Yeo, J. Ma, and M. A. Do, "An ultra-compact hairpin band pass filter with additional zero points," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 4, 262-264, April 2007.
doi:10.1109/LMWC.2007.892955 Google Scholar
6. Riaz, L., U. Naeem, and M. F. Shafique, "Miniaturization of SIW cavity filters through stub loading," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 12, 981-983, December 2016.
doi:10.1109/LMWC.2016.2623242 Google Scholar
7. Pu, J., F. Xu, and Y. Li, "Miniaturized substrate integrated waveguide bandpass filters based on novel complementary split ring resonators," 2019 IEEE MTT-S International Microwave Biomedical Conference (IMBioC), 1-3, Nanjing, China, 2019. Google Scholar
8. Makimoto, M., K. Kikuchi, and S. Yamashita, "Compact TV channel filters in the UHF band," IEEE Transactions on Cable Television, Vol. CATV-5, No. 4, 164-168, 1980.
doi:10.1109/TCATV.1980.285820 Google Scholar
9. Orellana, M., et al. "Design of capacitively loaded coupled-line bandpass filters with compact size and spurious suppression," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 4, 1235-1248, April 2017.
doi:10.1109/TMTT.2016.2638843 Google Scholar
10. Lee, S. and Y. Lee, "Generalized miniaturization method for coupled-line bandpass filters by reactive loading," IEEE Transactions on Microwave Theory and Techniques, Vol. 58, No. 9, 2383-2391, September 2010.
doi:10.1109/TMTT.2010.2058281 Google Scholar
11. Wang, C., Z. Wang, and Y. M. Huang, "Size-miniaturized half-mode substrate integrated waveguide bandpass filter incorporating E-shaped defected ground structure for wideband communication and radar applications," 2018 20th International Conference on Advanced Communication Technology (ICACT), 12-16, Chuncheon, Korea (South), 2018. Google Scholar
12. Peng, B., et al. "Compact quad-mode bandpass filter based on quad-mode DGS resonator," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 234-236, April 2016.
doi:10.1109/LMWC.2016.2537053 Google Scholar
13. Luo, C., et al. "Quasi-reflectionless microstrip bandpass filters using bandstop filter for out-of-band improvement," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 10, 1849-1853, October 2020.
doi:10.1109/TCSII.2019.2946915 Google Scholar
14. Liu, H., et al. "High-temperature superconducting bandpass filter using asymmetric steppedimpedance resonators with wide-stopband performance," IEEE Transactions on Applied Superconductivity, Vol. 25, No. 5, 1-6, Oct. 2015.
doi:10.1109/TASC.2015.2456106 Google Scholar
15. Chen, C., "A coupled-line coupling structure for the design of quasi-elliptic bandpass filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 4, 1921-1925, April 2018.
doi:10.1109/TMTT.2017.2783378 Google Scholar
16. Tang, C. and M. Chen, "Wide stopband parallel-coupled stacked SIRs bandpass filters with open-stub lines," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 12, 666-668, December 2006.
doi:10.1109/LMWC.2006.885620 Google Scholar
17. Maharjan, R. K., et al. "Miniature stubs-loaded square open-loop bandpass fliter with asymmetrical feeders," Microwave and Optical Technology Letters, Vol. 55, No. 2, 329-332, February 2013.
doi:10.1002/mop.27318 Google Scholar
18. Sheikhi, A., A. Alipour, and A. Mir, "Design and fabrication of an ultra-wide stopband compact bandpass filter," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 67, No. 2, 265-269, February 2020.
doi:10.1109/TCSII.2019.2907177 Google Scholar
19. Das, et al., "2nd harmonic suppression in parallel-coupled microstrip bandpass filter by using Koch fractals," 2016 IEEE Annual India Conference (INDICON), 1-6, Bangalore, India, 2016. Google Scholar
20. Luo, C., et al. "A wide stopband wideband HTS filter using stepped-impedance resonators with an interdigital capacitor structure," IEEE Transactions on Applied Superconductivity, Vol. 30, No. 2, 1-5, March 2020.
doi:10.1109/TASC.2019.2957164 Google Scholar
21. Han, C., Y. Rao, H. J. Qian, and X. Luo, "High-selectivity bandpass filter with wide upper stopband using harmonic suppression structure," 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 1-3, Nanjing, China, 2019. Google Scholar
22. Ieu, W., D. Zhou, D. Zhang, et al. "Compact dual-mode dual-band HMSIW bandpass filters using source-load coupling with multiple transmission zeros," Electronics Letters, Vol. 55, No. 4, 210-222, 2019.
doi:10.1049/el.2018.7694 Google Scholar