1. Wang, D., X. Wang, and S.-Y. Jung, "Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2295-2298, 2013.
doi:10.1109/TMAG.2013.2242454 Google Scholar
2. Chen, Q., G. Xu, F. Zhai, and G. Liu, "A novel Spoke-type PM motor with auxiliary salient poles for low torque pulsation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4762-4773, 2020.
doi:10.1109/TIE.2019.2924864 Google Scholar
3. Liu, F., L. Cheng, M. Wang, G. Qiao, P. Zheng, and H. Yang, "Comparative study of hybrid-PM variable-flux machines with different series PM configurations," AIP Advances, Vol. 9, No. 12, 19-25, 2019. Google Scholar
4. Afinowi, I. A. A., Z. Q. Zhu, Y. Guan, J. C. Mipo, and P. Farah, "Switched-flux machines with hybrid NdFeB and ferrite magnets," Compel the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 35, No. 2, 456-472, 2016.
doi:10.1108/COMPEL-03-2015-0112 Google Scholar
5. Liu, X. P., M. Wang, D. Chen, and Q. H. Xie, "A variable flux axial field permanent magnet synchronous machine with a novel mechanical device," IEEE Transactions on Magnetics, Vol. 51, No. 11, 5876-5887, 2015. Google Scholar
6. Aljehaimi, A. M. and P. Pillay, "Operating envelopes of the variable-flux machine with positive reluctance torque," IEEE Transactions on Transportation Electrification, Vol. 4, No. 3, 707-719, 2018.
doi:10.1109/TTE.2018.2828385 Google Scholar
7. Ibrahim, M., L. Masisi, and P. Pillay, "Design of variable flux permanent-magnet machine for reduced inverter rating," IEEE Transactions on Industry Applications, Vol. 51, No. 5, 3666-3674, 2015.
doi:10.1109/TIA.2015.2423661 Google Scholar
8. Hua, H., Z. Q. Zhu, A. Pride, R. P. Deodhar, and T. Sasaki, "Comparison of end effect in series and parallel hybrid permanent-magnet variable-flux memory machines," IEEE Transactions on Industry Applications, Vol. 55, No. 3, 2529-2537, 2019.
doi:10.1109/TIA.2018.2889979 Google Scholar
9. Limsuwan, N., T. Kato, K. Akatsu, and R. D. Lorenz, "Design and evaluation of a variable-flux flux-intensifying interior permanent-magnet machine," IEEE Transactions on Industry Applications, Vol. 50, No. 2, 1015-1024, 2014.
doi:10.1109/TIA.2013.2273482 Google Scholar
10. Limsuwan, N., Y. Shibukawa, D. D. Reigosa, and R. D. Lorenz, "Novel design of flux-intensifying interior permanent magnet synchronous machine suitable for self-sensing control at very low speed and power conversion," IEEE Transactions on Industry Applications, Vol. 47, No. 5, 2004-2012, 2011.
doi:10.1109/TIA.2011.2161534 Google Scholar
11. Kato, T., N. Limsuwan, C. Y. Yu, K. Akatsu, and R. D. Lorenz, "Rare earth reduction using a novel variable magnetomotive force flux-intensified IPM machine," IEEE Transactions on Industry Applications, Vol. 50, No. 3, 1748-1756, 2014.
doi:10.1109/TIA.2013.2283314 Google Scholar
12. Liu, F. J., X. Y. Zhu, W. Y. Wu, L. Quan, Z. X. Xiang, and Y. Z. Hua, "Design and analysis of an interior permanent magnet synchronous machine with multiflux-barriers based on flux-intensifying effect," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1949-1964, 2018. Google Scholar
13. Kim, K. C., K. Kim, H. J. Kim, and J. Lee, "Demagnetization analysis of permanent magnets according to rotor types of interior permanent magnet synchronous motor," IEEE Transactions on Magnetics, Vol. 45, No. 6, 2799-2802, 2009.
doi:10.1109/TMAG.2009.2018661 Google Scholar
14. Zhao, X. K., B. Q. Kou, L. Zhang, and H. Q. Zhang, "Design and analysis of permanent magnets in a negative-salient permanent magnet synchronous motor," IEEE Access, Vol. 8, No. 54, 182249-182259, 2020.
doi:10.1109/ACCESS.2020.3026841 Google Scholar
15. Zhu, X. Y., W. Y. Wu, S. Yang, Z. X. Xiang, and L. Quan, "Comparative design and analysis of new type of flux-intensifying interior permanent magnet motors with different Q-axis rotor flux barriers," IEEE Transactions on Energy Conversion, Vol. 33, No. 4, 2260-2269, 2018.
doi:10.1109/TEC.2018.2837119 Google Scholar
16. Ngo, K., M. F. Hsieh, and A. Huynh, "Torque enhancement for a novel flux intensifying PMa- SynRM using surface-inset permanent magnet," IEEE Transactions on Magnetics, Vol. 55, No. 7, 253-260, 2019.
doi:10.1109/TMAG.2019.2897022 Google Scholar
17. Sun, A., et al., "Magnetization and performance analysis of a variable-flux flux-intensifying interior permanent magnet machine," 2015 IEEE International Electric Machines & Drives Conference (IEMDC), 369-375, 2015.
doi:10.1109/IEMDC.2015.7409086 Google Scholar
18. Chen, J., J. Li, and R. Qu, "Maximum-torque-per-ampere and magnetization-state control of a variable-flux permanent magnet machine," IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 1158-1169, 2018.
doi:10.1109/TIE.2017.2733494 Google Scholar
19. Zhu, X., S. Yang, Y. Du, Z. Xiang, and L. Xu, "Electromagnetic performance analysis and verification of a new flux-intensifying permanent magnet brushless motor with two-layer segmented permanent magnets," IEEE Transactions on Magnetics, Vol. 52, No. 7, 1-4, 2016. Google Scholar
20. Zhang, L., X. Zhu, J. Gao, and Y. Mao, "Design and analysis of new five-phase flux-intensifying fault-tolerant interior-permanent-magnet motor for sensorless operation," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 6055-6065, 2020.
doi:10.1109/TIE.2019.2955407 Google Scholar
21. Huang, C. Z., Z. X. Zhang, X. P. Liu, J. J. Xiao, and H. Xu, "Finite element analysis and dynamics simulation of mechanical flux-varying PM machines with auto-rotary PMs," Journal of Power Electronics, Vol. 19, No. 3, 744-750, 2019. Google Scholar
22. Liu, X., T. Sun, Y. Zou, C. Huang, and J. Liang, "Modelling and analysis of a novel mechanical-variable- flux IPM machine with rotatable magnetic poles," IET Electric Power Applications, Vol. 14, No. 11, 2171-2178, 2020.
doi:10.1049/iet-epa.2020.0171 Google Scholar
23. Morimoto, E., N. Niguchi, and K. Hirata, "Variable flux permanent magnet motor utilizing centrifugal force," International Journal of Applied Electromagnetics and Mechanics, Vol. 52, No. 1–2, 563-569, 2016.
doi:10.3233/JAE-162065 Google Scholar