Vol. 112
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-22
Research on Conducted EMI Characteristics of SiC MOSFET Considering Temperature Effect
By
Progress In Electromagnetics Research C, Vol. 112, 69-82, 2021
Abstract
The junction temperature change of SiC MOSFET will change its switching process, and then affect the electromagnetic interference (EMI) characteristics of the system where the device is located and the safe operation of the surrounding equipment. Therefore, it is of great significance to research the temperature dependence of its EMI characteristics. In this paper, a buck converter composed of SiC MOSFET is taken as the research object to study the temperature variation characteristics of the conducted EMI spectrum during the switching process. Combined with the specific circuit connection form of the buck converter, the coupling paths of the conducted EMI are determined, and then the influence mechanisms of temperature change on the differential mode (DM) interference and common mode (CM) interference are analyzed. The theoretical analysis and experimental results show that the DM interference of the buck converter composed of SiC MOSFET increases with the increase of temperature, and the CM interference is almost unaffected by temperature. When the working temperature increases from 25˚C to 145˚C, the peak value of DM voltage increases by 6.7 dBμV, and the peak value of CM voltage changes less than 1.4 dBμV.
Citation
Ming-Xing Du Weiguo Bian Hongbin Wang Qiqi Dai Ziwei Ouyang , "Research on Conducted EMI Characteristics of SiC MOSFET Considering Temperature Effect," Progress In Electromagnetics Research C, Vol. 112, 69-82, 2021.
doi:10.2528/PIERC21030303
http://www.jpier.org/PIERC/pier.php?paper=21030303
References

1. Wu, X., S. Cheng, Q. Xiao, and K. Sheng, "A 3600 V/80 A series-parallel-connected silicon carbide MOSFETs module with a single external gate driver," IEEE Transactions on Power Electronics, Vol. 29, No. 5, 2296-2306, 2014.
doi:10.1109/TPEL.2013.2287382

2. Wang, Z., et al., "A high temperature silicon carbide MOSFET power module with integrated silicon-on-insulator-based gate drive," IEEE Transactions on Power Electronics, Vol. 30, No. 3, 1432-1445, 2015.
doi:10.1109/TPEL.2014.2321174

3. Hamilton, D. P., et al., "High-temperature electrical and thermal aging performance and application considerations for SiC power DMOSFETs," IEEE Transactions on Power Electronics, Vol. 32, No. 10, 7967-7979, 2017.
doi:10.1109/TPEL.2016.2636743

4. Alibakhshikenari, M., et al., "Antenna mutual coupling suppression over wideband using embedded periphery slot for antenna arrays," Electronics, Vol. 7, No. 9, 2018.
doi:10.3390/electronics7090198

5. Guo, Y. J., L. Wang, and C. Liao, "Systematic analysis of conducted electrio-magnetic interferences for the electric drive system in electric vehicles," Progress In Electromagnetics Research, Vol. 134, 359-378, 2013.
doi:10.2528/PIER12092816

6. Yin, W. J. and T. Wen, "Study on EMI analysis and inhibitory techniques for switching converter devices," Progress In Electromagnetics Research Letters, Vol. 85, 59-64, 2019.
doi:10.2528/PIERL18102203

7. Qi, J., et al., "Comparative temperature dependent evaluation and analysis of 1.2-kV SiC power diodes for extreme temperature applications," IEEE Transactions on Power Electronics, Vol. 35, No. 12, 13384-13399, 2020.
doi:10.1109/TPEL.2020.2990601

8. Xie, Y., C. Chen, Z. Huang, T. Liu, Y. Kang, and F. Luo, "High frequency conducted EMI investigation on packaging and modulation for a SiC-based high frequency converter," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, No. 3, 1789, 2019.
doi:10.1109/JESTPE.2019.2919349

9. Kim, T., D. Feng, M. Jang, and V. G. Agelidis, "Common mode noise analysis for cascaded boost converter with silicon carbide device," IEEE Transactions on Power Electronics, Vol. 32, No. 3, 1917-1926, 2017.
doi:10.1109/TPEL.2016.2569424

10. Ales, A., M. A. CheurfiBelhadj, A. Zaoui, and J.-L. Schanen, "Conducted emission prediction within the network based on switching impedances and EMI sources," Progress In Electromagnetics Research B, Vol. 85, 103-124, 2019.
doi:10.2528/PIERB19012901

11. DiMarino, C., Z. Chen, M. Danilovic, D. Boroyevich, R. Burgos, and P. Mattavelli, "High-temperature characterization and comparison of 1.2 kV SiC power MOSFETs," 2013 IEEE Energy Conversion Congress and Exposition, 2013.

12. Chen, Z., Y. Yao, M. Danilovic, and D. Boroyevich, "Performance evaluation of SiC power MOSFETs for high-temperature applications," International Power Electronics and Motion Control Conference (EPE/PEMC), 2012.

13. Li, H., et al., "Analysis of SiC MOSFET dI/dt and its temperature dependence," IET Power Electronics, Vol. 11, No. 3, 491-500, 2018.
doi:10.1049/iet-pel.2017.0203

14. Gonzalez, J. O., O. Alatise, J. Hu, L. Ran, and P. A. Mawby, "An investigation of temperature-sensitive electrical parameters for SiC power MOSFETs," IEEE Transactions on Power Electronics, Vol. 32, No. 10, 7954-7966, 2017.
doi:10.1109/TPEL.2016.2631447

15. Xiang, Y., X. Pei, W. Zhou, Y. Kang, and H. Wang, "A fast and precise method for modeling EMI source in two-level three-phase converter," IEEE Transactions on Power Electronics, Vol. 34, No. 11, 10650-10664, 2019.
doi:10.1109/TPEL.2019.2891120

16. Gong, X. and J. A. Ferreira, "Comparison and reduction of conducted EMI in SiC JFET and Si IGBT-based motor drives," IEEE Transactions on Power Electronics, Vol. 29, No. 4, 1757-1767, 2014.
doi:10.1109/TPEL.2013.2271301

17. Huang, H., J. Wu, W. Xu, and T. Lu, "The influence of driving parameters on conducted EMI for an IGBT module," IEEE Transactions on Electromagnetic Compatibility, Vol. 62, No. 5, 2285-2293, 2020.
doi:10.1109/TEMC.2020.2971720

18. Han, D. and B. Sarlioglu, "Comprehensive study of the performance of SiC MOSFET-based automotive DC-DC converter under the influence of parasitic inductance," IEEE Transactions on Industry Applications, Vol. 52, No. 6, 5100-5111, 2016.
doi:10.1109/TIA.2016.2586463

19. Dalal, D. N., et al., "Impact of power module parasitic capacitances on medium-voltage SiC MOSFETs switching transients," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, No. 1, 298-310, 2020.
doi:10.1109/JESTPE.2019.2939644

20. Han, D., S. Li, Y. Wu, W. Choi, and B. Sarlioglu, "Comparative analysis on conducted CM EMI emission of motor drives: WBG versus Si devices," IEEE Transactions on Industrial Electronics, Vol. 64, No. 10, 8353-8363, 2017.
doi:10.1109/TIE.2017.2681968

21. Xie, Y., C. Chen, Z. Huang, T. Liu, Y. Kang, and F. Luo, "High frequency conducted EMI investigation on packaging and modulation for a SiC-based high frequency converter," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, No. 3, 1789-1804, 2019.
doi:10.1109/JESTPE.2019.2919349

22. Zhang, B. and S. Wang, "A survey of EMI research in power electronics systems with wide-bandgap semiconductor devices," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, No. 1, 626-643, 2020.
doi:10.1109/JESTPE.2019.2953730

23. Jiang, X., et al., "Online junction temperature measurement for SiC MOSFET based on dynamic threshold voltage extraction," IEEE Transactions on Power Electronics, Vol. 36, No. 4, 3757-3768, 2021.
doi:10.1109/TPEL.2020.3022390

24. Sun, K., H. Wu, J. Lu, Y. Xing, and L. Huang, "Improved modeling of medium voltage SiC MOSFET within wide temperature range," IEEE Transactions on Power Electronics, Vol. 29, No. 5, 2229-2237, 2014.
doi:10.1109/TPEL.2013.2273459

25. Ji, S., S. Zheng, F. Wang, and L. M. Tolbert, "Temperature-dependent characterization, modeling, and switching speed-limitation analysis of third-generation 10-kV SiC MOSFET," IEEE Transactions on Power Electronics, Vol. 33, No. 5, 4317-4327, 2018.
doi:10.1109/TPEL.2017.2723601

26. Wang, Z., F. Yang, S. L. Campbell, and M. Chinthavali, "Characterization of SiC trench MOSFETs in a low-inductance power module package," IEEE Transactions on Industry Applications, Vol. 55, No. 4, 4157-4166, 2019.
doi:10.1109/TIA.2019.2902839

27. Yang, Y., Y. Wen, and Y. Gao, "A novel active gate driver for improving switching performance of high-power SiC MOSFET modules," IEEE Transactions on Power Electronics, Vol. 34, No. 8, 7775-7787, 2019.
doi:10.1109/TPEL.2018.2878779

28. Baliga, B. J., Fundamentals of Power Semiconductor Devices, Spring-Verlag, New York, USA, 2008.

29. Hasanuzzama, M., S. K. Islam, L. M. Tolbert, and M. T. Alam, "Temperature dependency of MOSFET device characteristics in 4H- and 6H-silicon carbide (SiC)," International Semiconductor Device Research Symposium, 2003.

30. Jin, M. and M. Weiming, "Power converter EMI analysis including IGBT nonlinear switching transient model," IEEE Transactions on Industrial Electronics, Vol. 53, No. 5, 1577-1583, 2006.
doi:10.1109/TIE.2006.882009

31. Roscoe, N. M., D. Holliday, N. McNeill, and S. J. Finney, "LV converters: Improving efficiency and EMI using Si MOSFET MMC and experimentally exploring slowed switching," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 4, 2159-2172, 2018.
doi:10.1109/JESTPE.2018.2811320