Vol. 98
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-05-30
Gain Enhancement Using Modified Circular Loop FSS Loaded with Slot Antenna for Sub-6 GHz 5G Application
By
Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021
Abstract
In this paper, a modified circular loop FSS with a slot antenna is proposed for sub-6 GHz 5G applications. The proposed FSS reduces the resonant frequency to towards lower bands of conventional circular FSS without change in its size. The operating bandwidth (-10 dB) of proposed antenna loaded with polarization insensitive single-layer FSS varies from 3.6 GHz to 6.1 GHz with an average gain of 7-7.5 dB and a maximum realized gain of 7.87 dB. An FSS superstrate is loaded onto a slot antenna to increase the realized gain of 4 dB, where the FSS shows desirable electromagnetic wave reflection characteristics over operating bandwidth and can be used in 5G sub-6 GHz band applications.
Citation
Anubhav Kumar, Asok De, and Rakesh Kumar Jain, "Gain Enhancement Using Modified Circular Loop FSS Loaded with Slot Antenna for Sub-6 GHz 5G Application," Progress In Electromagnetics Research Letters, Vol. 98, 41-48, 2021.
doi:10.2528/PIERL21031108
References

1. Sen, G., A. Banerjee, M. Kumar, and S. Das, "An ultra-wideband monopole antenna with a gain enhanced performance using a novel split-ring meta-surface reflector," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1296-1300, 2017.
doi:10.1002/mop.30527

2. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "Gain enhancement of a printed leaf shaped UWB antenna using dual FSS layers and experimental study for ground coupling GPR applications," Microwave and Optical Technology Letters, Vol. 60, No. 6, 1417-1423, 2018.
doi:10.1002/mop.31171

3. Chatterjee, A. and S. K. Parui, "Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2233-2239, 2017.
doi:10.1109/TAP.2017.2677914

4. Chatterjee, A. and K. P. Susanta, "Gain enhancement of a wide slot antenna using a second-order bandpass frequency selective surface," Radioengineering, Vol. 24, No. 2, 455-461, 2015.
doi:10.13164/re.2015.0455

5. Ghosh, A., T. Mandal, and S. Das, "Design of triple band slot-patch antenna with improved gain using triple band artificial magnetic conductor," Radioengineering, Vol. 25, No. 3, 442-448, 2016.
doi:10.13164/re.2016.0442

6. Gharsallah, H., L. Osman, and L. Latrach, "Circularly polarized two-layer conical DRA based on metamaterial," Microwave and Optical Technology Letters, Vol. 59, No. 8, 1913-1919, 2017.
doi:10.1002/mop.30650

7. Belen, M. A., "Performance enhancement of a microstrip patch antenna using dual-layer frequency-selective surface for ISM band applications," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2730-2734, 2018.
doi:10.1002/mop.31465

8. Gunes, F., M. A. Belen, and P. Mahouti, "Performance enhancement of a microstrip patch antenna using substrate integrated waveguide frequency selective surface for ISM band applications," Microwave and Optical Technology Letters, Vol. 60, No. 5, 1160-1164, 2018.
doi:10.1002/mop.31124

9. Belen, M. A., P. Mahouti, and M. Palandoken, "Design and realization of novel frequency selective surface loaded dielectric resonator antenna via 3D printing technology," Microwave and Optical Technology Letters, Vol. 62, No. 5, 2004-2013, 2020.
doi:10.1002/mop.32245

10. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, e22505, 2020.

11. Krishna, R. R. and R. Kumar, "Slotted ground microstrip antenna with FSS reflector for high-gain horizontal polarisation," Electronics Letters, Vol. 51, No. 8, 599-600, 2015.
doi:10.1049/el.2015.0339

12. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 219-222, 2011.
doi:10.1109/LAWP.2011.2130509

13. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12 , 1448-1453, 2018.
doi:10.1049/iet-com.2018.0170

14. Huang, J., T.-K. Wu, and S.-W. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210

15. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201

16. Varkani, A. R., Z. H. Firouzeh, and A. Z. Nezhad, "Equivalent circuit model for array of circular loop FSS structures at oblique angles of incidence," IET Microwaves, Antennas & Propagation, Vol. 12, No. 5, 749-755, 2017.
doi:10.1049/iet-map.2017.1004

17. Das, P. and K. Mandal, "Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna," IET Microwaves, Antennas & Propagation, Vol. 13, No. 3, 269-277, 2019.
doi:10.1049/iet-map.2018.5426