1. Sen, G., A. Banerjee, M. Kumar, and S. Das, "An ultra-wideband monopole antenna with a gain enhanced performance using a novel split-ring meta-surface reflector," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1296-1300, 2017.
doi:10.1002/mop.30527 Google Scholar
2. Kundu, S., A. Chatterjee, S. K. Jana, and S. K. Parui, "Gain enhancement of a printed leaf shaped UWB antenna using dual FSS layers and experimental study for ground coupling GPR applications," Microwave and Optical Technology Letters, Vol. 60, No. 6, 1417-1423, 2018.
doi:10.1002/mop.31171 Google Scholar
3. Chatterjee, A. and S. K. Parui, "Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2233-2239, 2017.
doi:10.1109/TAP.2017.2677914 Google Scholar
4. Chatterjee, A. and K. P. Susanta, "Gain enhancement of a wide slot antenna using a second-order bandpass frequency selective surface," Radioengineering, Vol. 24, No. 2, 455-461, 2015.
doi:10.13164/re.2015.0455 Google Scholar
5. Ghosh, A., T. Mandal, and S. Das, "Design of triple band slot-patch antenna with improved gain using triple band artificial magnetic conductor," Radioengineering, Vol. 25, No. 3, 442-448, 2016.
doi:10.13164/re.2016.0442 Google Scholar
6. Gharsallah, H., L. Osman, and L. Latrach, "Circularly polarized two-layer conical DRA based on metamaterial," Microwave and Optical Technology Letters, Vol. 59, No. 8, 1913-1919, 2017.
doi:10.1002/mop.30650 Google Scholar
7. Belen, M. A., "Performance enhancement of a microstrip patch antenna using dual-layer frequency-selective surface for ISM band applications," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2730-2734, 2018.
doi:10.1002/mop.31465 Google Scholar
8. Gunes, F., M. A. Belen, and P. Mahouti, "Performance enhancement of a microstrip patch antenna using substrate integrated waveguide frequency selective surface for ISM band applications," Microwave and Optical Technology Letters, Vol. 60, No. 5, 1160-1164, 2018.
doi:10.1002/mop.31124 Google Scholar
9. Belen, M. A., P. Mahouti, and M. Palandoken, "Design and realization of novel frequency selective surface loaded dielectric resonator antenna via 3D printing technology," Microwave and Optical Technology Letters, Vol. 62, No. 5, 2004-2013, 2020.
doi:10.1002/mop.32245 Google Scholar
10. Bhattacharya, A., B. Dasgupta, and R. Jyoti, "Design and analysis of ultrathin X-band frequency selective surface structure for gain enhancement of hybrid antenna," International Journal of RF and Microwave Computer-Aided Engineering, e22505, 2020. Google Scholar
11. Krishna, R. R. and R. Kumar, "Slotted ground microstrip antenna with FSS reflector for high-gain horizontal polarisation," Electronics Letters, Vol. 51, No. 8, 599-600, 2015.
doi:10.1049/el.2015.0339 Google Scholar
12. Ranga, Y., L. Matekovits, K. P. Esselle, and A. R. Weily, "Multioctave frequency selective surface reflector for ultrawideband antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 219-222, 2011.
doi:10.1109/LAWP.2011.2130509 Google Scholar
13. Roy, S. and U. Chakraborty, "Gain enhancement of a dual-band WLAN microstrip antenna loaded with diagonal pattern metamaterials," IET Communications, Vol. 12, No. 12 , 1448-1453, 2018.
doi:10.1049/iet-com.2018.0170 Google Scholar
14. Huang, J., T.-K. Wu, and S.-W. Lee, "Tri-band frequency selective surface with circular ring elements," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 2, 166-175, 1994.
doi:10.1109/8.277210 Google Scholar
15. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201 Google Scholar
16. Varkani, A. R., Z. H. Firouzeh, and A. Z. Nezhad, "Equivalent circuit model for array of circular loop FSS structures at oblique angles of incidence," IET Microwaves, Antennas & Propagation, Vol. 12, No. 5, 749-755, 2017.
doi:10.1049/iet-map.2017.1004 Google Scholar
17. Das, P. and K. Mandal, "Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna," IET Microwaves, Antennas & Propagation, Vol. 13, No. 3, 269-277, 2019.
doi:10.1049/iet-map.2018.5426 Google Scholar