Vol. 103
Latest Volume
All Volumes
PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-06-23
Decoupling Control of Permanent Magnet Synchronous Motor Based on Parameter Identification of Fuzzy Least Square Method
By
Progress In Electromagnetics Research M, Vol. 103, 49-60, 2021
Abstract
In order to improve the performance of decoupling control for an interior permanent magnet synchronous motor (IPMSM), a recursive least square algorithm with fuzzy forgetting factor is proposed to identify IPMSM parameters. Firstly, the problems of coupling and parameter identification of IPMSM are analyzed. Secondly, the identification process of resistance and flux linkage is analyzed, and the static parameters are identified as the initial value or constant value. Thirdly, fuzzy control is used to dynamically adjust the forgetting factor in the recursive least square algorithm to make the identification of direct axis and quadrature axis inductance parameters more accurate. Finally, the effectiveness and accuracy of the proposed parameter identification algorithm are verified on the platform, and the good performance of the proposed algorithm in decoupling control is verified. The experimental results show that the identification method can accurately identify the motor parameters in static state and dynamic state. At the same time, the forgetting factor is dynamically adjusted to improve the parameter identification effect and decoupling control performance of the motor.
Citation
Xin Liu, Yanfei Pan, Yilin Zhu, Hui Han, and Lei Ji, "Decoupling Control of Permanent Magnet Synchronous Motor Based on Parameter Identification of Fuzzy Least Square Method," Progress In Electromagnetics Research M, Vol. 103, 49-60, 2021.
doi:10.2528/PIERM21032601
References

1. Yin, S. and W. Wang, "Study on the flux-weakening capability of permanent magnet synchronous motor for electric vehicle," Mechatronics, Vol. 38, 115-120, 2016.
doi:10.1016/j.mechatronics.2016.03.005

2. Liu, G., G. Qiu, S. Jin, and F. G. Zhang, "Study on counter-rotating dual-rotor permanent magnet motor for underwater vehicle propulsion," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 1-5, 2018.

3. Zhang, B., Q. Li, G. Feng, B. Wang, and H. Sun, "Study on mine hoist driven by PMSM of low voltage and multi-branch," Advanced Materials Research, Vol. 2140, 22-25, 2013.
doi:10.4028/www.scientific.net/AMR.800.22

4. Knypinski, L. and J. Krupinski, "The slewing drive system for tower crane with permanent magnet synchronous motor," Archives of Electrical Engineering, Vol. 70, No. 1, 189-201, 2021.

5. Aubert, B., J. Regnier, S. Caux, D. Alejo, and , "Kalman-filter-based indicator for online interturn short circuits detection in permanent-magnet synchronous generators," IEEE Transactions on Industrial Electronics, Vol. 62, No. 3, 1921-1930, 2015.
doi:10.1109/TIE.2014.2348934

6. She, Z., J. Liu, Q. Liang, and W. Zou, "Identification for PMSM rotor speed based on optimized extended kalman filter and load torque observer," 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD), 1-2, Tianjin, China, 2020.

7. Shi, Y., "Online identification of permanent magnet flux based on extended kalman filter for IPMSM drive with position sensorless control," IEEE Transactions on Industrial Electronics, Vol. 59, No. 11, 4169-4178, 2012.
doi:10.1109/TIE.2011.2168792

8. Cheng, L., X. J. Ye, D. R. Sun, Y. Ye, and Y. Jin, "Low speed compound direct-drive permanent magnet synchronous motor control system with load torque compensation," Applied Mechanics & Materials, Vol. 416–417, 652-657, 2013.
doi:10.4028/www.scientific.net/AMM.416-417.652

9. Zhong, C. and Y. Lin, "Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor," International Journal of Electronics, Vol. 104, No. 11, 1854-1873, 2017.
doi:10.1080/00207217.2017.1329946

10. Qu, Z. Y. and Z. M. Ye, "Speed regulation of a permanent magnet synchronous motor via model reference adaptive control," Advanced Materials Research, Vol. 268–270, 513-516, 2011.
doi:10.4028/www.scientific.net/AMR.268-270.513

11. Kesavan, P. and A. Karthikeyan, "Electromagnetic torque-based model reference adaptive system speed estimator for sensorless surface mount permanent magnet synchronous motor drive," IEEE Transactions on Industrial Electronics, Vol. 67, No. 7, 5936-5947, 2020.
doi:10.1109/TIE.2020.2965499

12. Aliprantis, D. C., S. D. Sudhoff, and B. T. Kuhn, "Genetic algorithm-based parameter identification of a hysteretic brushless exciter model," IEEE Transactions on Energy Conversion, Vol. 21, No. 1, 148-154, 2006.
doi:10.1109/TEC.2005.847967

13. Gaur, P., B. Singh, and A. Mittal, "Artificial neural network based controller and speed estimation of permanent magnet synchronous motor," 2008 Joint International Conference on Power System Technology and IEEE Power India Conference, 1-6, New Delhi, India, 2008.

14. Sandre-Hernandez, O., R. Morales-Caporal, J. Rangel-Magdaleno, and H. Peregrina-Barreto, "Parameter identification of PMSMs using experimental measurements and a PSO algorithm," IEEE Transactions on Instrumentation & Measurement, Vol. 64, No. 8, 2146-2154, 2015.
doi:10.1109/TIM.2015.2390958

15. Liu, Z. H., H. L. Wei, X. H. Li, and K. Liu, "Global identification of electrical and mechanical parameters in PMSM drive based on dynamic self-learning PSO," IEEE Transactions on Power Electronics, Vol. 33, No. 12, 10858-10871, 2018.
doi:10.1109/TPEL.2018.2801331

16. Li, Y., B. Zhang, and X. Xu, "Decoupling control for permanent magnet in-wheel motor using internal model control based on back-propagation neural network inverse system," Bulletin of the Polish Academy of Sciences: Technical Sciences, Vol. 66, No. 6, 1-12, 2018.

17. Zhang, J. L. and C. S. Zhang, "Parameters identification of induction motor for electric vehicle based on least squares method," Advanced Materials Research, Vol. 383–390, 648-653, 2011.

18. Zhou, Y., H. Wang, and J. Lian, "Research on online parameter identification of interior permanent magnet synchronous motor based on augmented robust forgetting factor recursive least square," Transactions on Emerging Telecommunications Technologies, Vol. 31, No. 12, 1-13, 2020.
doi:10.1002/ett.3996

19. Leopold, S., F. Maurice, P. Maria, and P. Guillaume, "MTPV flux-weakening strategy for PMSM high speed drive," IEEE Transactions on Industry Applications, Vol. 54, No. 6, 6081-6089, 2018.
doi:10.1109/TIA.2018.2856841