1. Mak, K. M., H. W. Lai, K. M. Luk, and C. H. Chan, "Circularly polarized patch antenna for future 5G mobile phones," IEEE Access, Vol. 2, 1521-1529, 2014.
doi:10.1109/ACCESS.2014.2382111 Google Scholar
2. Kumar, S., A. S. Dixit, R. R. Malekar, H. D. Raut, and L. K. Shevada, "Fifth generation antennas: A comprehensive review of design and performance enhancement techniques," IEEE Access, Vol. 8, No. 163 , 568-593, 2020. Google Scholar
3. Shayea, I., T. A. Rahman, M. H. Azmi, and M. R. Islam, "Real measurement study for rain rate and rain attenuation conducted over 26 GHz microwave 5G link system in malaysia," IEEE Access, Vol. 6, No. 19 , 044-064, 2018. Google Scholar
4. Fatah, S. Y. A., E. K. Hamad, W. Swelam, A. Allam, M. F. A. Sree, and H. A. Mohamed, "Design and implementation of UWB slot-loaded printed antenna for microwave and millimeter wave applications," IEEE Access, Vol. 9, No. 29 , 555-564, 2021. Google Scholar
5. Rahman, M., M. NagshvarianJahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics, Vol. 8, No. 2, 158, 2019.
doi:10.3390/electronics8020158 Google Scholar
6. Marzouk, H. M., M. I. Ahmed, and A. H. A. Shaalan, "Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications," Progress In Electromagnetics Research C, Vol. 93, 103-117, 2019.
doi:10.2528/PIERC19032303 Google Scholar
7. Ghouz, H. H. M., M. F. A. Sree, and M. A. Ibrahim, "Novel wideband microstrip monopole antenna designs for WiFi/LTE/WiMax devices," IEEE Access, Vol. 8, 9532-9539, 2020.
doi:10.1109/ACCESS.2019.2963644 Google Scholar
8. Ojaroudi Parchin, N., H. Jahanbakhsh Basherlou, M. Alibakhshikenari, Y. Ojaroudi Parchin, Y. I. Al-Yasir, R. A. Abd-Alhameed, and E. Limiti, "Mobile-phone antenna array with diamond-ring slot elements for 5G massive MIMO systems," Electronics, Vol. 8, No. 5, 521, 2019.
doi:10.3390/electronics8050521 Google Scholar
9. Kiem, N. K., H. N. B. Phuong, and D. N. Chien, "Design of compact 4 × 4 UWB-MIMO antenna with WLAN band rejection," International Journal of Antennas and Propagation, Vol. 2014, 2014. Google Scholar
10. Abdalla, M. A. and A. A. Ibrahim, "Compact and closely spaced metamaterial MIMO antenna with high isolation for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1452-1455, 2013.
doi:10.1109/LAWP.2013.2288338 Google Scholar
11. Zou, X.-J., G.-M. Wang, Y.-W. Wang, and B.-F. Zong, "Mutual coupling reduction of quasi-Yagi antenna array with hybrid wideband decoupling structure," AEU — International Journal of Electronics and Communications, Vol. 129, 153553, 2021.
doi:10.1016/j.aeue.2020.153553 Google Scholar
12. Ibrahim, A. A., M. A. Abdalla, A. B. Abdel-Rahman, and H. F. Hamed, "Compact MIMO antenna with optimized mutual coupling reduction using DGS," International Journal of Microwave and Wireless Technologies, Vol. 6, No. 2, 173, 2014.
doi:10.1017/S1759078713001013 Google Scholar
13. Toktas, A. and A. Akdagli, "Compact multiple-input multiple-output antenna with low correlation for ultra-wide-band applications," IET Microwaves, Antennas & Propagation, Vol. 9, No. 8, 822-829, 2015.
doi:10.1049/iet-map.2014.0086 Google Scholar
14. Liu, L., S. W. Cheung, and T. I. Yuk, "Compact multiple-input-multiple-output antenna using quasi-self-complementary antenna structures for ultrawideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 13, 1021-1029, 2014.
doi:10.1049/iet-map.2013.0503 Google Scholar
15. Abdelaziz, A. and E. K. Hamad, "Isolation enhancement of 5G multiple-input multiple-output microstrip patch antenna using metamaterials and the theory of characteristic modes," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 11, e22416, 2020.
doi:10.1002/mmce.22416 Google Scholar
16. Zou, X.-J., G.-M. Wang, Y.-W. Wang, and H.-P. Li, "An efficient decoupling network between feeding points for multielement linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3101-3108, 2019.
doi:10.1109/TAP.2019.2899039 Google Scholar
17. Ki Hamad, E. and M. Zm Hamdalla, "Design of miniaturized and high isolation metamaterial-based MIMO antenna for mobile terminals," JES. Journal of Engineering Sciences, Vol. 45, No. 6, 763-772, 2017.
doi:10.21608/jesaun.2017.116885 Google Scholar
18. Zhao, A. and Z. Ren, "Size reduction of self-isolated MIMO antenna system for 5G mobile phone applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 1, 152-156, 2018.
doi:10.1109/LAWP.2018.2883428 Google Scholar
19. Ren, Z. and A. Zhao, "Dual-band MIMO antenna with compact self-decoupled antenna pairs for 5G mobile applications," IEEE Access, Vol. 7, 82288-82296, 2019.
doi:10.1109/ACCESS.2019.2923666 Google Scholar
20. Yang, Z., J. Xiao, and Q. Ye, "Enhancing MIMO antenna isolation characteristic by manipulating the propagation of surface wave," IEEE Access, Vol. 8, No. 115 , 572-581, 2020. Google Scholar
21. Nakmouche, M. F., A. Allam, D. E. Fawzy, D. B. Lin, M. Fathy, and A. Sree, "Development of H-slotted DGS based dual band antenna using ann for 5G applications," 15th Eur. Conf. Antennas Propag. (EuCap), 2021. Google Scholar
22. Nakmouche, M. F., A. Allam, D. E. Fawzy, and D. B. Lin, "Low profile dual band H-slotted DGS based antenna design using ann for K/Ku band applications," International Conference on Electrical & Electronics Engineering, 2021. Google Scholar
23. Nakmouche, M. F. and M. Nassim, "Impact of metamaterials DGS in PIFA antennas for IOT terminals design," 2019 6th International Conference on Image and Signal Processing and Their Applications (ISPA), 1-4, IEEE, 2019. Google Scholar
24. Nakmouche, M. F., D. E. Fawzy, A. Allam, H. Taher, and M. F. A. Sree, "Dual band SIW patch antenna based on H-slotted DGS for Ku band application," 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE), 194-197, IEEE, 2020.
doi:10.1109/ICEEE49618.2020.9102564 Google Scholar
25. Mahlaoui, Z., A. Latif, A. Hussaini, I. Elfergani, A. Ali, F. Mirza, and R. Abd-Alhameed, "Design of a Sierpinski patch antenna around 2.4 GHz/5 GHz for WiFi (ieee 802.11 n) applications," 2015 Internet Technologies and Applications (ITA), 472-474, IEEE, 2015.
doi:10.1109/ITechA.2015.7317450 Google Scholar
26. Goyal, N., S. S. Dhillon, and A. Marwaha, "Hybrid fractal microstrip patch antenna for wireless applications," 2015 1st International Conference on Next Generation Computing Technologies (NGCT), 456-461, IEEE, 2015.
doi:10.1109/NGCT.2015.7375160 Google Scholar
27. Mandelbrot, B. B., "Stochastic models for the earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands," Proceedings of the National Academy of Sciences, Vol. 72, No. 10, 3825-3828, 1975.
doi:10.1073/pnas.72.10.3825 Google Scholar
28. Kaur, M. and J. S. Sivia, "Ann and FA based design of hybrid fractal antenna for ISM band applications," Progress In Electromagnetics Research C, Vol. 98, 127-140, 2020.
doi:10.2528/PIERC19110901 Google Scholar
29. Cohen, N., "Fractal antenna and fractal resonator primer," Benoit Mandelbrot: A Life in Many Dimensions, 207-228, World Scientific, 2015. Google Scholar
30. Mezaal, Y. S., "New compact microstrip patch antennas: Design and simulation results," Indian Journal of Science and Technology, Vol. 9, No. 12, 1-6, 2016.
doi:10.17485/ijst/2016/v9i12/85950 Google Scholar
31. Kubacki, R., M. Czy zewski, and D. Laskowski, "Minkowski island and crossbar fractal microstrip antennas for broadband applications," Applied Sciences, Vol. 8, No. 3, 334, 2018.
doi:10.3390/app8030334 Google Scholar
32. Sultan, K. S. and H. H. Abdullah, "Planar UWB MIMO-diversity antenna with dual notch characteristics," Progress In Electromagnetics Research C, Vol. 93, 119-129, 2019.
doi:10.2528/PIERC19031202 Google Scholar
33. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems [wireless corner]," IEEE Antennas and Propagation Magazine, Vol. 59, No. 2, 162-170, 2017.
doi:10.1109/MAP.2017.2658346 Google Scholar
34. Wang, F., Z. Duan, X. Wang, Q. Zhou, and Y. Gong, "High isolation millimeter-wave wideband MIMO antenna for 5G communication," International Journal of Antennas and Propagation, Vol. 2019, 2019. Google Scholar
35. Sun, Y. -X. and K. W. Leung, "Substrate-integrated two-port dual-frequency antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3692-3697, 2016.
doi:10.1109/TAP.2016.2565740 Google Scholar
36. Zhang, Y., J.-Y. Deng, M.-J. Li, D. Sun, and L.-X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 747-751, 2019.
doi:10.1109/LAWP.2019.2901961 Google Scholar
37. Khalid, M., S. Iffat Naqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, Y. Amin, et al. "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071 Google Scholar
38. Iqbal, A., A. Basir, A. Smida, N. K. Mallat, I. Elfergani, J. Rodriguez, and S. Kim, "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019.
doi:10.1109/ACCESS.2019.2933913 Google Scholar
39. Hussain, N., M.-J. Jeong, J. Park, and N. Kim, "A broadband circularly polarized Fabry-Perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
doi:10.1109/ACCESS.2019.2908441 Google Scholar
40. Jiang, H., L.-M. Si, W. Hu, and X. Lv, "A symmetrical dual-beam bowtie antenna with gain enhancement using metamaterial for 5G MIMO applications," IEEE Photonics Journal, Vol. 11, No. 1, 1-9, 2019. Google Scholar
41. Al Abbas, E., M. Ikram, A. T. Mobashsher, and A. Abbosh, "MIMO antenna system for multi-band millimeter-wave 5G and wideband 4G mobile communications," IEEE Access, Vol. 7, No. 181 , 916-923, 2019. Google Scholar
42. Iffat Naqvi, S., N. Hussain, A. Iqbal, M. Rahman, M. Forsat, S. S. Mirjavadi, and Y. Amin, "Integrated LTE and millimeter-wave 5G MIMO antenna system for 4G/5G wireless terminals," Sensors, Vol. 20, No. 14, 3926, 2020.
doi:10.3390/s20143926 Google Scholar
43. El Hadri, D., A. Zakriti, A. Zugari, M. El Ouahabi, and J. El Aouf, "High isolation and ideal correlation using spatial diversity in a compact MIMO antenna for fifth-generation applications," International Journal of Antennas and Propagation, Vol. 2020, 2020. Google Scholar