1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Chen, Y., R. Mittra, and P. Harms, "Finite-difference time-domain algorithm for solving Maxwell’s equations in rotationally symmetric geometries," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 6, 832-839, 1996.
doi:10.1109/22.506441 Google Scholar
3. Ramadan, O., "Complex envelope Crank Nicolson PML algorithm for band-limited electromagnetic applications," Electron. Lett., Vol. 42, No. 23, 2006.
doi:10.1049/el:20062511 Google Scholar
4. Pursel, J. D. and P. M. Goggans, "A finite-difference time-domain method for solving electromagnetic problems with bandpass-limited sources," IEEE Trans. Antennas Propag., Vol. 47, No. 1, 9-15, 1999.
doi:10.1109/8.752978 Google Scholar
5. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.
6. Namiki, T., "3-D ADI-FDTD method unconditionally stable time-domain algorithm for solving full vector Maxwell’s equations," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 10, 1743-1748, 2000.
doi:10.1109/22.873904 Google Scholar
7. Shibayama, J., M. Muraki, J. Yamauchi, and H. Nakano, "Efficient implicit FDTD algorithm based on locally one-dimensional scheme," Electron. Lett., Vol. 41, No. 19, 1046-1047, 2005.
doi:10.1049/el:20052381 Google Scholar
8. Fu, W. and E. L. Tan, "Development of split-step FDTD method with higher order spatial accuracy," Electron. Lett., Vol. 40, No. 20, 1252-1254, 2004.
doi:10.1049/el:20046040 Google Scholar
9. Ogurtsov, S. and G. Pan, "An updated review of general dispersion relation for conditionally and unconditionally stable FDTD algorithms," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2572-2583, 2008.
doi:10.1109/TAP.2008.927569 Google Scholar
10. Ju, S., K.-Y. Jung, and H. Kim, "Investigation on the characteristics of the envelope FDTD based on the alternating direction implicit scheme," IEEE Microw. Wireless Compon. Lett., Vol. 13, No. 9, 414-416, 2003.
doi:10.1109/LMWC.2003.815696 Google Scholar
11. Sun, G. and C. W. Trueman, "Approximate Crank-Nicolson scheme for the 2-D finite-difference time-domain method for TEz waves," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2963-2972, 2004.
doi:10.1109/TAP.2004.835142 Google Scholar
12. Sun, G. and C. W. Trueman, "Unconditionally stable Crank-Nicolson scheme for solving two-dimensional Maxwell’s equations," Electron. Lett., Vol. 39, No. 7, 595-597, 2003.
doi:10.1049/el:20030416 Google Scholar
13. Shi, X. Y. and X. Y. Jiang, "Implementation of the Crank-Nicolson Douglas-Gunn finite difference time domain with complex frequency-shifted perfectly matched layer for modeling unbounded isotropic dispersive media in two dimensions," Microw. Opt. Technol. Lett., Vol. 62, No. 3, 1103-1111, 2020.
doi:10.1002/mop.32150 Google Scholar
14. Sun, G. and C. W. Trueman, "Unconditionally-stable FDTD method based on Crank-Nicolson scheme for solving three-dimensional Maxwell equations," Electron. Lett., Vol. 40, No. 10, 589-590, 2004.
doi:10.1049/el:20040420 Google Scholar
15. Sun, G. and C. W. Trueman, "Efficient implementations of the Crank-Nicolson scheme for the finite-difference time-domain method," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 5, 2275-2284, 2006.
doi:10.1109/TMTT.2006.873639 Google Scholar
16. Tan, E. L., "Efficient algorithms for Crank-Nicolson-based finite-difference time-domain methods," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 408-413, 2008.
doi:10.1109/TMTT.2007.914641 Google Scholar
17. Jiang, H. L., L. T. Wu, X. G. Zhang, et al. "Computationally efficient CN-PML for EM simulations," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 12, 4646-4655, 2019.
doi:10.1109/TMTT.2019.2946160 Google Scholar
18. Wu, P., Y. Xie, H. Jiang, and T. Natsuki, "Performance enhanced Crank-Nicolson boundary conditions for EM problems," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1513-1527, 2021.
doi:10.1109/TAP.2020.3016403 Google Scholar
19. Jiang, H. L., J. F. Zhang, W. X. Jiang, and T. J. Cui, "Unconditionally stable CN-PML algorithm for frequency-dispersive left-handed materials," IEEE Ante. Wirel. Propag. Lett., Vol. 16, 2006-2009, 2017.
doi:10.1109/LAWP.2017.2692883 Google Scholar
20. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "GPU accelerated unconditionally stable Crank-GPU accelerated unconditionally stable Crank," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606 Google Scholar
21. Rouf, H. K., "Improvement of computational performance of implicit finite difference time domain method," Progress In Electromagnetics Research M, Vol. 43, 1-8, 2015.
doi:10.2528/PIERM15052402 Google Scholar
22. Long, S.-Y., W.-J. Chen, Q.-W. Liang, and M. Zhao, "A general ADE-FDTD with Crank-Nicolson scheme for the simulation of dispersive structures," Progress In Electromagnetics Research Letters, Vol. 86, 1-6, 2019.
doi:10.2528/PIERL19040801 Google Scholar
23. Fajardo, J. E., J. Galv´an, F. Vericat, C. M. Carlevaro, and R. M. Irastorza, "“Phaseless microwave imaging of dielectric cylinders: An artificial neural networks-based approach," Progress In Electromagnetics Research, Vol. 166, 95-105, 2019.
doi:10.2528/PIER19080610 Google Scholar
24. Wu, P. Y., Y. J. Xie, H. L. Jiang, et al. "Unconditionally stable higher order perfectly matched layer applied to terminate anisotropic magnetized plasma," Inter. J. RF Micro. Comp.-Aided Engi., Vol. 33, No. 1, e22011, 2020. Google Scholar
25. Li, J. X. and P. Y. Wu, "Efficient PML implementation based on the unconditionally stable CN-FDTD algorithm for anisotropic magnetized plasma," Optik, Vol. 171, 468-475, 2018.
doi:10.1016/j.ijleo.2018.06.072 Google Scholar
26. Chen, H. L. and B. Chen, "Anisotropic-medium PML for ADI-BOR-FDTD method," IEEE Micro. Wirel. Compo. Lett., Vol. 18, No. 4, 221-223, 2008.
doi:10.1109/LMWC.2008.918842 Google Scholar
27. Li, J. X., W. Jiao, and X. M. Zhao, "Unconditionally stable CFS-PML based on CNAD-BOR-FDTD for truncating unmagnetized plasma," IEEE Trans. Electro. Compat., Vol. 60, No. 6, 2069-2072, 2018.
doi:10.1109/TEMC.2017.2788421 Google Scholar
28. Wu, P. Y., Y. J. Xie, H. L. Jiang, and L. Q. Niu, "Higher-order approximate CN-PML theory for magnetized ferrite simulations," Advan. Theory Simulat., Vol. 3, No. 4, 2020. Google Scholar
29. Mukherjee, B. and D. K. Vishwakarma, "Application of finite difference time domain to calculate the transmission coefficient of an electromagnetic wave impinging perpendicularly on a dielectric interface with modified MUR-I ABC," Defence Science Journal, DRDO, Vol. 62, No. 4, 228-235, 2012.
doi:10.14429/dsj.62.792 Google Scholar
30. Mukherjee, B., "Numerical solution in FDTD for absorbing boundary condition over dielectric surfaces," Journal of Advance Research in Scientific Computing, IASR, Vol. 4, No. 1, 13-23, 2012. Google Scholar
31. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Com. Phys., Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
32. Berenger, J. P., Perfectly Matched Layer (PML) for Computational Electromagnetics, Morgan & Claypool, 2007.
33. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwells equations with stretched coordinates," Microw. Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304 Google Scholar
34. Kuzuoglu, M. and R. Mittra, "Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers," IEEE Microw. Guided Wave Lett., Vol. 6, 447-449, 1996.
doi:10.1109/75.544545 Google Scholar
35. Ramadan, O., "Unsplit field implicit PML algorithm for complex envelope dispersive LOD-FDTD simulations," Electron. Lett., Vol. 43, No. 5, 2007.
doi:10.1049/el:20073945 Google Scholar
36. Chen, J., J. G. Wang, and C. M. Tian, "Using weakly conditionally stable-body of revolution-finite-difference time-domain method to simulate dielectric film-coated circular waveguide," IET Microw. Antennas Propag., Vol. 9, No. 9, 853-860, 2015.
doi:10.1049/iet-map.2014.0441 Google Scholar
37. Wu, P. Y., Y. J. Xie, H. L. Jiang, and L. Q. Niu, "Performance-enhanced complex envelope ADI-PML for bandpass EM simulation," IEEE Micro. Wire. Compon. Lett., Vol. 30, No. 8, 729-732, 2020.
doi:10.1109/LMWC.2020.3007454 Google Scholar
38. Nakazono, Y. and H. Asai, "Application of relaxation-based technique to ADI-FDTD method and its estimation," 2007 IEEE International Symposium on Circuits and Systems, 1489-1492, 2007.
doi:10.1109/ISCAS.2007.378585 Google Scholar
39. Farahat, N., J. Carrion, and L. Morales, "PML termination of conducting media in the finite difference time domain method for Bodies of Revolution (BORs)," Workshop on Computational Electromagnetics in Time-Domain, 2005, CEM-TD 2005, No. 96–99, Atlanta, GA, USA, 2015. Google Scholar
40. Appannagarri, N., et al. "Modeling phased array antennas in Ansoft HFSS," Proceedings 2000 IEEE International Conference on Phased Array Systems and Technology (Cat. No. 00TH8510), 323-326, 2000.
doi:10.1109/PAST.2000.858966 Google Scholar
41. Luo, K., S. Ge, L. Zhang, H. Liu, and J. Xing, "“Simulation analysis of ansys HFSS and CST microwave studio for frequency selective surface," 2019 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2019. Google Scholar
42. Tan, E. L., "Fundamental implicit FDTD schemes for computational electromagnetics and educational mobile apps (Invited review)," Progress In Electromagnetics Research, Vol. 168, 39-59, 2020.
doi:10.2528/PIER20061002 Google Scholar
43. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.
doi:10.2528/PIERM10090605 Google Scholar
44. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 170-177, 2008.
doi:10.1109/TAP.2007.913089 Google Scholar
45. Singh, G., E. L. Tan, and Z. N. Chen, "Efficient complex envelope ADI-FDTD method for the analysis of anisotropic photonic crystals," IEEE Photo. Techn. Lett., Vol. 23, No. 12, 801-803, 2011.
doi:10.1109/LPT.2011.2138123 Google Scholar
46. Singh, G., E. L. Tan, and Z. N. Chen, "Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method," Opt. Lett., Vol. 36, 1494-1496, 2011.
doi:10.1364/OL.36.001494 Google Scholar
47. Heh, D. Y. and E. L. Tan, "Unconditionally stable multiple one-dimensional ADI-FDTD method for coupled transmission lines," IEEE Trans. Antennas Propag., Vol. 66, No. 12, 7488-7492, 2018.
doi:10.1109/TAP.2018.2872724 Google Scholar
48. Yang, Z. and E. L. Tan, "Efficient 3-D fundamental LOD-FDTD method incorporated with memristor," IEICE Trans. Electronics, Vol. E99-C, Vol. 7, 788-792, 2016.
doi:10.1587/transele.E99.C.788 Google Scholar
49. Heh, D. Y. and E. L. Tan, "Some recent developments in fundamental implicit FDTD schemes," Asia-Pacific Symp. Electromag. Compat., 153-156, Singapore, 2012. Google Scholar
50. Yang, Z., E. L. Tan, and D. Y. Heh, "Variants of second-order temporal-accurate 3-D FLODFDTD schemes with three split matrices," IEEE Int. Conf. Comput. Electromagn., 265-267, Guangzhou, 2016. Google Scholar