1. Collin, R. E., Field Theory of Guided Waves, 2nd Edition, IEEE Press & Wiley-Interscience, 1991.
2. Awai, I., "Artificial dielectric resonators for miniaturized filters," IEEE Microwave Magazine, Vol. 9, No. 5, 55-64, 2008.
doi:10.1109/MMM.2008.927709 Google Scholar
3. Kock, W. E., "Metallic delay lenses," Bell Syst. Tech. J., Vol. 27, 58-82, 1948.
doi:10.1002/j.1538-7305.1948.tb01331.x Google Scholar
4. Saadoun, M. M. I. and N. Engheta, "A reciprocal phase shifter using novel pseudo chiral or medium," Microwave Optical Technology Letters, Vol. 5, No. 4, 184-188, 1992.
doi:10.1002/mop.4650050412 Google Scholar
5. Tanaka, M. and K. Sato, "Transmission and reflection characteristics of a multilayered chiral slab," IEICE Trans. Electron., Vol. J75-C-I, No. 10, 677-680, 1992. Google Scholar
6. Saha, S. C., J. P. Grant, Y.Ma, A. Khalid, F. Hong, and D. R. S. Cumming, "Terahertz frequencydomain spectroscopy method for vector characterization of liquid using an artificial dielectric," IEEE Transactions on Terahertz Science and Technology, Vol. 2, No. 1, 113-122, 2012.
doi:10.1109/TTHZ.2011.2177172 Google Scholar
7. Zhang, J., P. A. R. Ade, P. Mauskopf, L. Moncelsi, G. Savini, and N. Whitehouse, "A new artificial dielectric metamaterial and its application as a THz anti-reflection coating," Applied Optics, Vol. 48, No. 35, 6635-6642, 2009.
doi:10.1364/AO.48.006635 Google Scholar
8. Guo, Z., H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," Journal of Applied Physics, Vol. 127, No. 7, 071101, 2020.
doi:10.1063/1.5128679 Google Scholar
9. Awai, I., T. Yamauchi, S. Yasui, and Y. Zhang, "Very thin artificial dielectric lens antenna made of printed circuit board," Proc. International Symposium on Antennas and Propagation (ISAP) 2007, 390-393, 2007. Google Scholar
10. Zhang, Y., A. Inoue, and I. Awai, "Design and fabrication of an artificial dielectric flat lens antenna," IEICE, Vol. J95-B, No. 12, 1634-1641, 2012 (in Japanese). Google Scholar
11. Zhang, Y., Y. Aratani, and H. Nakazima, "A microwave free-space method using artificial lens with anti-reflection layer," Sensing and Imaging: International Journal of Subsurface Sensing Technologies and Applications, Vol. 18, Artile 17, Springer, 2017. Google Scholar
12. Zhang, Y., R. Aoki, and S. Morita, "Free-space moisture measurement using a flat artificial lens antenna," Journal of Microwave Power and Electromagnetic Energy, Vol. 48, No. 3, 184-191, 2014.
doi:10.1080/08327823.2014.11689882 Google Scholar
13. Trentini, G. V., "Partially reflecting sheet arrays," IRE Trans. Antennas Propagat., Vol. 4, No. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455 Google Scholar
14. Jackson, D. and N. Alexopoulos, "Gain enhancement methods for printed circuit antennas," IEEE Transactions on Antennas and Propagation, Vol. 33, No. 9, 976-987, 1985.
doi:10.1109/TAP.1985.1143709 Google Scholar
15. Al-Tarifi, M. A., D. E. Anagnostou, A. K. Amert, and K. W. Whites, "Dual-band resonant cavity antenna with a single dielectric superstrate," Antennas and Propagation Society International Symposium (APSURSI), 1-2, 2012. Google Scholar
16. Pozar, D. M., Microwave Engineering, 3rd Edition, Wiley Inc., 2005.
17. Smith, D. R., D. C. Vier, Th. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E, Vol. 71, paper No. 036617, 2005. Google Scholar
18. Feresidis, A. P., et al. "Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 209-215, 2005.
doi:10.1109/TAP.2004.840528 Google Scholar
19. Foroozesh, A. and L. Shafai, "Investigation into the effects of the patch-type FSS superstrate on the high-gain cavity resonance antenna design," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 258-270, 2009.
doi:10.1109/TAP.2009.2037702 Google Scholar
20. Kraszewski, A. W., S. Trabelsi, and S. O. Nelson, "Wheat permittivity measurements in free space," Journal of Microwave Power and Electromagnetic Energy, Vol. 31, No. 3, 135-141, 1996.
doi:10.1080/08327823.1996.11688304 Google Scholar
21. Kraszewski, A. W., "Microwave aquametry: Introduction to the workshop," Microwave Aquametry, Electromagnetic Wave Interaction with Water-containing Materials, 3-34, edited by Andrzej Kraszewski, IEEE Press, 1996. Google Scholar
22. Trabelsi, S., A. W. Kraszewski, and S. O. Nelson, "Nondestructive sensing of physical properties of granular materials by microwave permittivity measurement," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 3, 953-963, 2006.
doi:10.1109/TIM.2006.873787 Google Scholar