Vol. 99
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-08-07
High Gain and Wideband Multi-Stack Multilayer Anisotropic Dielectric Antenna
By
Progress In Electromagnetics Research Letters, Vol. 99, 103-109, 2021
Abstract
A multi-stack anisotropic cylindrical dielectric resonator antenna with high gain and wide bandwidth is reported. This antenna is designed with three different stacks, and each stack consists of a multilayer dielectric structure to emulate uniaxial anisotropy. Multi-stack, multilayer structure is responsible for producing wide bandwidth and high gain. In addition, the antenna is surrounded by cylindrical metallic cavity to increase directivity in broadside direction. Similar simulated and measured results indicate a wide impedance bandwidth of 37% along with a maximum gain 9.25 dB.
Citation
Farhad Moayyed, Hamid Reza Dalili Oskouei, and Morteza Mohammadi Shirkolaei, "High Gain and Wideband Multi-Stack Multilayer Anisotropic Dielectric Antenna," Progress In Electromagnetics Research Letters, Vol. 99, 103-109, 2021.
doi:10.2528/PIERL21062307
References

1. Long, S. A., M. W. McAllister, and L. C. Shen, "The resonant cylindrical dielectric cavity antenna," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 3, 406-412, May 1983.
doi:10.1109/TAP.1983.1143080

2. Das, S. and S. Sahu, "Polarization recon gurability enabled metamaterial inspired dielectric resonator based Fabry-Perot resonator cavity antenna with high gain and bandwidth," Int. J. RF Microw. Comput. Aided Eng., e22603, 2021, https://doi.org/10.1002/mmc.22603.

3. Mahmud, M. Z., M. Samsuzzaman, L. C. Paul, M. R. Islam, A. A. Althuwayb, and M. T. Islam, "A dielectric resonator based line stripe miniaturized ultra-wideband antenna for fth-generation applications," Int. J. Commun. Syst., Vol. 34, e4740, 2021, https://doi.org/10.1002/dac.4740.

4. Ballav, S., A. Chatterjee, and S. K. Parui, "Gain augmentation of a dual-band dielectric resonator antenna with frequency selective surface superstrate," Int. J. RF Microw. Comput. Aided Eng., Vol. 31, e22575, 2021, https://doi.org/10.1002/mmce.22575.

5. Sun, W.-J., W.-W. Yang, P. Chu, and J.-X. Chen, "A wideband stacked dielectric resonator antenna for 5G applications," Int. J. RF Microw. Comput. Aided Eng., Vol. 29, e21897, 2019, https://doi.org/10.1002/mmce.21897.
doi:10.1002/mmce.21652

6. Girjashankar, P. R. and T. Upadhyaya, "Substrate integrated waveguide fed dual band quad- elements rectangular dielectric resonator MIMO antenna for millimeter wave 5G wireless communication systems," AEU --- International Journal of Electronics and Communications, Vol. 137, 2021.

7. Meher, P. R., B. R. Behera, S. K. Mishra, and A. A. Althuwayb, "A chronological review of circularly polarized dielectric resonator antenna: Design and developments," Int. J. RF Microw. Comput. Aided Eng., e22589, 2021, https://doi.org/10.1002/mmce.22589.

8. Wang, L. and Y. En, "Broadband circularly polarized dielectric resonator antenna with L- shaped dielectric resonator strips," Int. J. RF Microw. Comput. Aided Eng., e22569, 2021, https://doi.org/10.1002/mmce.22569.

9. Chakraborty, P., U. Banerjee, A. Saha, and A. Karmakar, "A compact ultra wideband dielectric resonator antenna with dual-band circular polarization characteristics," Int. J. RF Microw. Comput. Aided Eng., Vol. 31, e22577, 2021, https://doi.org/10.1002/mmce.22577.

10. Fakhte, S., H. Oraizi, R. Karimian, and R. Fakhte, "A new wideband circularly polarized stair- shaped dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1828-1832, Apr. 2015.
doi:10.1109/TAP.2015.2392131

11. Fakhte, S., H. Oraizi, and M. H. Vadjed-Samiei, "A high gain dielectric resonator loaded patch antenna," Progress In Electromagnetics Research C, Vol. 30, 147-158, 2012.
doi:10.2528/PIERC12050813

12. Denidni, T. A., Y. Coulibaly, and H. Boutayeb, "Hybrid dielectric resonator antenna with circular mushroom-like structure for gain improvement," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 4, 1043-1049, Apr. 2009.
doi:10.1109/TAP.2009.2015809

13. Petosa, A. and S. Thirakoune, "Rectangular dielectric resonator antennas with enhanced gain," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 4, 1385-1389, Apr. 2011.
doi:10.1109/TAP.2011.2109690

14. Nasmuddin and K. P. Esselle, "Antennas with dielectric resonators andsurface mounted short horns for high gain and large bandwidth," IET Proc. Microw., Antennas Propag., Vol. 1, No. 3, 723-729, Jun. 2007.
doi:10.1049/iet-map:20060120

15. Dutta, K., D. Guha, C. Kumar, and Y. M. M. Antar, "New approach in designing resonance cavity high-gain antenna using nontransparent conducting sheet as the superstrate," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 6, 2807-2813, Jun. 2015.
doi:10.1109/TAP.2015.2415518

16. Cicchetti, R., A. Faraone, E. Miozz, R. Ravanelli, and O. Testa, "A high-gain mushroom-shaped dielectric resonator antenna for wideband wireless applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2848-2861, Jul. 2016.
doi:10.1109/TAP.2016.2560920

17. Gupta, P., D. Guha, and C. Kumar, "Dielectric resonator working as feed as well as antenna: New concept for dual-mode dual-band improved design," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1497-1502, 2016.
doi:10.1109/TAP.2016.2521887

18. Collin, R. E., "A simple arti cial anisotropic dielectric medium," IRE Transactions on Microwave Theory and Techniques, Vol. 6, No. 2, 206-209, Apr. 1958.
doi:10.1109/TMTT.1958.1124539

19. Yarga, S., K. Sertel, and J. L. Volakis, "Multilayer dielectric resonator antenna operating at degenerate band edge modes," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 287-290, 2009.
doi:10.1109/LAWP.2009.2015688

20. Fakhte, S. and H. Oraizi, "Analysis and design of rectangular uniaxial and biaxial anisotropic dielectric resonator antennas," Progress In Electromagnetics Research C, Vol. 62, 43-50, 2016.
doi:10.2528/PIERC15122803

21. Qiu, C.-W., L. Hu, X. Xu, and Y. Feng, "Spherical cloaking with homogeneous isotropic multilayered structures," Physical Review E, Vol. 79, No. 4, 2009.
doi:10.1103/PhysRevE.79.047602

22. Qiu, C., L. Hu, B. Zhang, B.-I. Wu, S. G. Johnson, and J. D. Giannopoulos, "Spherical cloaking using nonlinear transformations for improved segmentation into concentric isotropic coatings," Opt. Express, Vol. 17, No. 16, 13467, 2009.
doi:10.1364/OE.17.013467

23. Fakhte, S., H. Oraizi, and L. Matekovits, "Cylindrical uniaxial anisotropic resonator antenna with improved gain," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1404-1409, 2017.
doi:10.1109/TAP.2016.2647689

24. Gharsallah, H., L. Osman, and L. Latrach, "A novel cylindrical DRA for C-band applications," International Journal of Advanced Computer Science and Applications, Vol. 7, No. 8, 2016.
doi:10.14569/IJACSA.2016.070804

25. Sharma, A., A. Sarkar, A. Biswas, and M. J. Akhtar, "A-shaped wideband dielectric resonator antenna for wireless communication systems and its MIMO implementation," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, e21402, 2018.
doi:10.1002/mmce.21402

26. Dhar, S., R. Ghatak, B. Gupta, and D. R. Poddar, "A wideband Minkowski fractal dielectric resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 2895-2903, 2012.
doi:10.1109/TAP.2013.2251596