1. Rajagopal, R. and P. R. Rao, "Generalised algorithm for DOA estimation in a passive sonar," Radar and Signal Processing, IEE Proceedings F, Vol. 140, 12-20, 1993.
doi:10.1049/ip-f-2.1993.0002 Google Scholar
2. Macphie, R. H., "Thinned coincident arrays for the direct measurement of the principal solution in radio astronomy," IEEE Transactions on Antennas and Propagation, Vol. 51, 788-793, 2003.
doi:10.1109/TAP.2003.811055 Google Scholar
3. Arslan, G. and F. A. Sakarya, "A unified neural-network-based speaker localization technique," IEEE Transactions on Neural Networks, Vol. 11, 997-1002, 2000.
doi:10.1109/72.857779 Google Scholar
4. Tichavsky, P., K. T. Wong, and M. D. Zoltowski, "Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone," IEEE Trans. Signal Process., Vol. 49, 2498-2510, 2001.
doi:10.1109/78.960397 Google Scholar
5. Krim, H. and M. Viberg, "Two decades of array signal processing research: The parametric approach," IEEE Signal Processing Magazine, Vol. 13, 67-94, 1996.
doi:10.1109/79.526899 Google Scholar
6. Schmidt, R. O., "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, Vol. 34, 276-280, 1986.
doi:10.1109/TAP.1986.1143830 Google Scholar
7. Roy, R. and T. Kailath, "ESPRIT-estimation of signal parameters via rotational invariance techniques," IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 37, 984-995, 1989.
doi:10.1109/29.32276 Google Scholar
8. Yung-Dar, H. and M. Barkat, "Near-field multiple source localization by passive sensor array," IEEE Transactions on Antennas and Propagation, Vol. 39, 968-975, 1991.
doi:10.1109/8.86917 Google Scholar
9. Lee, J. H., D. H. Park, G. T. Park, and K. K. Lee, "Algebraic path-following algorithm for localising 3-D near-field sources in uniform circular array," Electronics Letters, Vol. 39, 1283-1285, 2003.
doi:10.1049/el:20030819 Google Scholar
10. Wanjun, Z. and M. Y. W. Chia, "Near-field source localization via symmetric subarrays," IEEE Signal Processing Letters, Vol. 14, 409-412, 2007.
doi:10.1109/LSP.2006.888390 Google Scholar
11. Junli, L. and L. Ding, "Passive localization of near-field sources using cumulant," IEEE Sensors Journal, Vol. 9, 953-960, 2009.
doi:10.1109/JSEN.2009.2025580 Google Scholar
12. Chen, J. C., R. E. Hudson, and K. Yao, "Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field," IEEE Trans. Signal Process., Vol. 50, No. 8, 1843-1854, Aug. 2002.
doi:10.1109/TSP.2002.800420 Google Scholar
13. Kabaoglu, N., H. A. Çırpan, E. Çekli, and S. Paker, "Deterministic maximum likelihood approach for 3-d near field source localization," AEU --- International Journal of Electronics and Communications, Vol. 57, 345-350, 2003.
doi:10.1078/1434-8411-54100183 Google Scholar
14. Grosicki, E., K. Abed-Meraim, and Y. Hua, "A weighted linear prediction method for near-field source localization," IEEE Trans. Signal Process., Vol. 53, 3651-3660, 2005.
doi:10.1109/TSP.2005.855100 Google Scholar
15. Swindlehurst, A. L. and T. Kailath, "Passive direction-of-arrival and range estimation for near-field sources," Fourth Annual ASSP Workshop on in Spectrum Estimation and Modeling, 1988, 123-128, 1988.
doi:10.1109/SPECT.1988.206176 Google Scholar
16. Yu-Sheng, H., K. T. Wong, and L. Yeh, "Mismatch of near-field bearing-range spatial geometry in source-localization by a uniform linear array," IEEE Transactions on Antennas and Propagation, Vol. 59, 3658-3667, 2011. Google Scholar
17. Stansfield, R. G., "Statistical theory of d.f. fixing," Electrical Engineers --- Part IIIA: Radiocommunication, Journal of the Institution of, Vol. 94, 762-770, 1947.
doi:10.1049/ji-3a-2.1947.0096 Google Scholar
18. Gavish, M. and A. J. Weiss, "Performance analysis of bearing-only target location algorithms," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, 817-828, 1992.
doi:10.1109/7.256302 Google Scholar
19. Kaplan, L. M., L. Qiang, and N. Molnar, "Maximum likelihood methods for bearings-only target localization," 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP'01), Vol. 5, 3001-3004, 2001. Google Scholar
20. Taff, L. G., "Target localization from bearings-only observations," IEEE Transactions on Aerospace and Electronic Systems, Vol. 33, 2-10, 1997.
doi:10.1109/7.570703 Google Scholar
21. Athley, F. and C. Engdahl, "Direction-of-arrival estimation using separated subarrays," Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers, 2000, Vol. 1, 585-589, 2000. Google Scholar
22. Engdahl, C. and P. Sunnergren, "Model-based adaptive detection and DOA estimation using separated sub-arrays," Proceedings of the IEEE in Radar Conference, 2002, 104-109, 2002.
doi:10.1109/NRC.2002.999702 Google Scholar
23. Vorobyov, S. A., A. B. Gershman, and W. Kon Max, "Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays," IEEE Trans. Signal Process., Vol. 53, 34-43, 2005.
doi:10.1109/TSP.2004.838966 Google Scholar
24. Jiang, J. C., P. Wei, and L. Gan, "Source location based on independent doublet array," Electronics Letters, Vol. 49, 907-908, 2013.
doi:10.1049/el.2013.1210 Google Scholar
25. Hua, Q. D., T. N. Osterdock, and D. C. Westcott, "GPS synchronized frequency/time source,", Google Patents, 1995. Google Scholar
26. Frey, R. L. and B. W. I. Kenneth, "Very low power high accuracy time and frequency circuits in GPS based tracking units,", Google Patents, 1999. Google Scholar
27. Wang, W.-Q., "GPS-based time & phase synchronization processing for distributed SAR," IEEE Transactions on Aerospace and Electronic Systems, Vol. 45, 1040-1051, 2009.
doi:10.1109/TAES.2009.5259181 Google Scholar
28. Cheng, C.-L., F.-R. Chang, and K.-Y. Tu, "Highly accurate real-time GPS carrier phase-disciplined oscillator," IEEE Transactions on Instrumentation and Measurement, Vol. 54, 819-824, 2005.
doi:10.1109/TIM.2004.843403 Google Scholar
29. Allan, D. W., N. Ashby, and C. C. Hodge, The Science of Timekeeping, Hewlett-Packard, 1997.
30. Lombardi, M. A., "The use of GPS disciplined oscillators as primary frequency standards for calibration and metrology laboratories," Measure: The Journal of Measurement Science, Vol. 3, 56-65, 2008. Google Scholar
31. Kriege, G. and M. Younis, "Impact of oscillator noise in bistatic and multistatic SAR," Geoscience and Remote Sensing Letters, IEEE, Vol. 3, 424-428, 2006.
doi:10.1109/LGRS.2006.874164 Google Scholar
32. Wang, W. Q., C. B. Ding, and X. D. Liang, "Time and phase synchronisation via direct-path signal for bistatic synthetic aperture radar systems," Radar, Sonar & Navigation, IET, Vol. 2, 1-11, 2008.
doi:10.1049/iet-rsn:20060097 Google Scholar
33. Styan, G. P. H., "Hadamard products and multivariate statistical analysis," Linear Algebra and Its Applications, Vol. 6, 217-240, 1973.
doi:10.1016/0024-3795(73)90023-2 Google Scholar
34. Ying-Wah, W., S. Rhodes, and E. H. Satorius, "Direction of arrival estimation via extended phase interferometry," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, 375-381, 1995.
doi:10.1109/7.366318 Google Scholar
35. Böhme, J. F., "Estimation of spectral parameters of correlated signals in wavefields," Signal Processing, Vol. 11, 329-337, 1986.
doi:10.1016/0165-1684(86)90075-7 Google Scholar
36. Ottersten, B., M. Viberg, P. Stoica, and A. Nehorai, "Exact and Large Sample Maximum Likelihood Techniques for Parameter Estimation and Detection in Array Processing," Radar Array Processing, Vol. 25, 99-151, S. Haykin, J. Litva, and T. Shepherd (eds.), Springer, Berlin Heidelberg, 1993. Google Scholar