1. "Final Acts WRC-19," ITU, http://handle.itu.int/11.1002/pub/813b5921-en (accessed Jul. 06, 2021). Google Scholar
2. Volakis, J., Antenna Engineering Handbook, 4th Edition, McGraw-Hill, 2007.
doi:10.1109/MWC.001.2000220
3. Barneto, C. B., S. D. Liyanaarachchi, M. Heino, T. Riihonen, and M. Valkama, "Full duplex radio/radar technology: The enabler for advanced joint communication and sensing," IEEE Wirel. Commun., Vol. 28, No. 1, 82-88, Feb. 2021, doi: 10.1109/MWC.001.2000220.
doi:10.1109/ACCESS.2021.3059488 Google Scholar
4. Wild, T., V. Braun, and H. Viswanathan, "Joint design of communication and sensing for beyond 5G and 6G systems," IEEE Access, Vol. 9, 30845-30857, 2021, doi: 10.1109/ACCESS.2021.3059488.
doi:10.1109/ACCESS.2016.2639038 Google Scholar
5. Paul, B., A. R. Chiriyath, and D. W. Bliss, "Survey of RF communications and sensing convergence research," IEEE Access, Vol. 5, 252-270, 2017, doi: 10.1109/ACCESS.2016.2639038.
doi:10.1109/JPROC.2011.2143650 Google Scholar
6. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proc. IEEE, Vol. 99, No. 8, 1390-1436, Aug. 2011, doi: 10.1109/JPROC.2011.2143650.
doi:10.1109/ACCESS.2019.2921522 Google Scholar
7. Rappaport, T. S., et al. "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, Vol. 7, 78729-78757, 2019, doi: 10.1109/ACCESS.2019.2921522. Google Scholar
8. Rajatheva, N., et al. "White paper on broadband connectivity in 6G,", University of Oulu, White paper No. 10, 2020. Accessed: Feb. 17, 2021, Online, Available: http://urn./urn:isbn: 9789526226798. Google Scholar
9. De Lima, C., et al. "6G white paper on localization and sensing,", University of Oulu, White paper No. 12, 2020, Accessed: Feb. 17, 2021, Online Available: http://urn./urn:isbn:9789526226743. Google Scholar
10. Tan, D. K. P., et al. "Integrated sensing and communication in 6G: Motivations, use cases, requirements, challenges and future directions," 2021 1st IEEE International Online Symposium on Joint Communications Sensing (JCS), 1-6, Dresden, Germany, Feb. 2021, doi: 10.1109/JCS52304.2021.9376324. Google Scholar
11. "Hexa-X,", https://hexa-x.eu/, accessed Jul. 07, 2021.
doi:10.1109/TTHZ.2018.2851922 Google Scholar
12. Song, Z., et al. "Temporal and spatial variability of water status in plant leaves by terahertz imaging," IEEE Trans. Terahertz Sci. Technol., Vol. 8, No. 5, 520-527, Sep. 2018, doi: 10.1109/TTHZ.2018.2851922.
doi:10.1109/IMWS3.2011.6061867 Google Scholar
13. Etayo, D., et al. "THz imaging system for industrial quality control," 2011 IEEE MTT-S International Microwave Workshop Series on Millimeter Wave Integration Technologies, 172-175, Sitges, Spain, Sep. 2011, doi: 10.1109/IMWS3.2011.6061867. Google Scholar
14. Yamada, Y., N. Michishita, and S. Kamada, "Construction of wide angle beam scanning lens an- tenna and its applications," 2009 International Conference on Space Science and Communication, 41-46, Port Dickson, Malaysia, Oct. 2009, doi: 10.1109/ICONSPACE.2009.5352674. Google Scholar
15. Fernandes, C. A., E. B. Lima, and J. R. Costa, "Dielectric lens antennas," Handbook of Antenna Technologies, 1001-1064, Z. N. Chen, D. Liu, H. Nakano, X. Qing, and T. Zwick, Eds., Singapore, Springer, 2016, doi: 10.1007/978-981-4560-44-3 40. Google Scholar
16. Sauleau, R., C. A. Fernandes, and J. R. Costa, "Review of lens antenna design and technologies for mm-wave shaped-beam applications," 11th International Symposium on Antenna Technology and Applied Electromagnetics, ANTEM 2005, 1-5, St. Malo, Jun. 2005, doi: 10.1109/ANTEM.2005.7852157.
doi:10.2528/PIERL20060108 Google Scholar
17. Kokkonen, M., M. Nelo, J. Chen, S. Myllymaki, and H. Jantunen, "Low permittivity environmentally friendly lenses for Ku band," Progress In Electromagnetics Research Letters, Vol. 93, 1-7, 2020.
doi:10.1049/el.2020.1875 Google Scholar
18. Myllymaki, S., M. Teirikangas, and M. Kokkonen, "BaSrTiO3 ceramic-polymer composite material lens antennas at 220{330 GHz telecommunication applications," Electron. Lett., Vol. 56, No. 22, 1165-1167, 2020, doi: 10.1049/el.2020.1875. Google Scholar
19. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, 2nd Edition, Wiley-Interscience, Hoboken, N.J., 2007.
doi:10.1038/srep28114
20. Hsieh, Y.-D., et al. "Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using bre-based asynchronous-optical-sampling terahertz time-domain spectroscopy," Sci. Rep., Vol. 6, No. 1, 28114, Jun. 2016, doi: 10.1038/srep28114.
doi:10.1007/s10762-018-0482-6 Google Scholar
21. Yamagiwa, M., et al. "Real-time amplitude and phase imaging of optically opaque objects by combining full-eld off-axis terahertz digital holography with angular spectrum reconstruction," J. Infrared Millim. Terahertz Waves, Vol. 39, No. 6, 561-572, Jun. 2018, doi: 10.1007/s10762-018-0482-6.
doi:10.1016/j.rse.2008.02.012 Google Scholar
22. Feret, J.-B., et al. "PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments," Remote Sens. Environ., Vol. 112, No. 6, 3030-3043, Jun. 2008, doi: 10.1016/j.rse.2008.02.012. Google Scholar